Что происходит с кузовом автомобиля при движении

Что происходит с кузовом автомобиля при движении

Основные причины износов и повреждений кузовов

Износ и повреждения кузовов могут быть вызваны различными причинами. В зависимости от причины возникновения неисправности делятся на эксплуатационные, конструктивные, технологические и возникающие из-за неправильного хранения и ухода за кузовом.

В процессе эксплуатации элементы и узлы кузова испытывают динамические нагрузки напряжениям от изгиба в вертикальной плоскости и скручивания, нагрузки от собственной массы, массы груза и пассажиров. Износу кузова и его узлов способствуют также значительные напряжения, которые возникают в результате колебания кузова не только при движении его по неровностям и возможных толчков и ударов при наезде на эти неровности, но и вследствие работы двигателя и погрешностей в балансировке вращающихся узлов шасси автомобиля (в особенности карданных валов), а также в результате смещения центра тяжести в продольном и поперечном направлениях.

Нагрузки могут быть восприняты кузовом полностью, если автомобиль не имеет рамы шасси, или частично при установке кузова на раму.

Исследования показали, что переменные по величине напряжения действуют на элементы кузова в процессе эксплуатации автомобиля. Эти напряжения вызывают накопление усталости и приводят к усталостным разрушениям. Усталостные разрушения начинаются в районе накопления напряжений.

В кузовах автомобилей, поступающих в капитальный ремонт, встречаются две основные группы повреждений и неисправностей:

повреждения, появляющиеся в результате нарастания изменений в состоянии кузова. К ним относится естественный износ, возникающий в процессе нормальной технической эксплуатации автомобиля, вследствие постоянного или периодического воздействия на кузов таких факторов, как коррозия, трение, загнивание Деревянных деталей, упругие и пластические деформации и др.;

Читайте также:  Как оцинковать деталь кузова автомобиля

неисправности, появление которых связано с действием человека и являются следствием конструктивных недоработок, заводских недоделок, нарушения норм ухода за кузовом и правил технической эксплуатации (в том числе и аварийные), некачественного ремонта кузовов.

Кроме нормального физического износа, при эксплуатации автомобиля в тяжелых условиях или в результате нарушения норм ухода и профилактики может возникнуть ускоренный износ, а также разрушение отдельных частей кузова.

Характерными видами износа и повреждений кузова в процессе эксплуатации автомобиля являются коррозия металла, возникающая на поверхности корпуса под действием химических или электромеханических воздействий; нарушение плотности заклепочных и сварных соединений, трещины и разрывы; деформация (вмятины, перекосы, прогибы, коробление, выпучины).

Коррозия — основной вид износа металлического корпуса кузова. В металлических деталях кузова чаще всего встречается электрохимический тип коррозии, при котором происходит взаимодействие металла с раствором электролита, адсорбируемого из воздуха, и которая появляется в результате как прямого попадания влаги на незащищенные металлические поверхности кузова, так и в результате образования конденсата в его межобшивочном пространстве (между внутренними и наружными панелями дверей, бортов, крыши и т.д.). Особенно сильно развивается коррозия в местах, труднодоступных для осмотра и очистки в небольших зазорах, а также в отбортовках и загибах кромок, где периодически попадающая в них влага может сохраняться длительное время.

Так, в колесных нишах может собираться грязь, соль и влага, стимулирующие процесс развития коррозии; днище кузова недостаточно стойко к воздействию факторов, возбуждающих коррозию. На скорость коррозии большое влияние оказывает состав атмосферы, ее загрязненность различными примесями (выбросами промышленных предприятий, такими, как двуокись серы, образующаяся в результате сжигания топлива; хлористый аммоний, попадающий в атмосферу вследствие испарения морей и океанов; твердые частицы в виде пыли), а также температура окружающей среды и др. Твердые частицы, содержащиеся в атмосфере или попадающие на поверхность кузова с полотна дороги, вызывают также абразивный износ металлической поверхности кузова. С повышением температуры скорость коррозии возрастает (в особенности при наличии в атмосфере агрессивных примесей и содержания влаги).

Зимние покрытия дорог солью для удаления снега и льда, а также работа автомобиля на морских побережьях приводят к увеличению коррозии автомобиля.

Коррозионные разрушения в кузове встречаются также в результате контакта стальных деталей с деталями, изготовленными из некоторых других материалов (дюралюминия, каучуков, содержащих сернистые соединения, пластмассовыми на основе фенольных смол и другими, а также в результате контакта металла с деталями, изготовленными из очень влажного пиломатериала, содержащего заметное количество органических кислот (муравьиную и др.).

Так, исследования показали, что при контакте стали с полиизобутиленом скорость коррозии металла в сутки составляет 20 мг/м 2 , а при контакте этой же стали с силиконовым каучуком — 321 мг/м 2 в сутки. Этот вид коррозии наблюдается в местах постановки различных резиновых уплотнителей, в местах прилегания к кузову хромированных декоративных деталей (ободков фар и т. д.).

К появлению коррозии на поверхности деталей кузова приводит также контактное трение, имеющее место при одновременном воздействии коррозионной среды и трения, при колебательном перемещении двух поверхностей металла относительно друг друга в коррозионной среде. Этим видом коррозии подвержены двери по периметру, крылья в местах присоединения их к корпусу болтами и другие металлические части кузова.

При окраске автомобилей может иметь место загрязнение тщательно подготовленных к окраске поверхностей кузова влажными руками и загрязненным воздухом. Это при недостаточно качественном покрытии также приводит к коррозии кузова.

Процесс коррозии кузовов происходит либо равномерно на значительной площади (поверхностная коррозия), либо разъедание идет в толщу металла, образуя глубокие местные разрушения — раковины, пятна в отдельных точках поверхности металла (точечная коррозия).

Сплошная коррозия менее опасна, чем местная, которая приводит к разрушению металлических частей кузова, утрате ими прочности к резкому снижению предела коррозионной усталости и к коррозионной хрупкости, характерной для облицовки кузова.

В зависимости от условий работы, способствующих возникновению коррозии, детали и узлы кузова могут быть подразделены на имеющие открытые поверхности, обращенные к полотну дороги (низ пола, крылья, арки колеса, пороги дверей, низ облицовки радиатора), на имеющие поверхности, которые находятся в пределах объема кузова (каркас, багажник, верх пола), и на имеющие поверхности, которые образуют закрытый изолированный объем (скрытые части каркаса, низ наружной облицовки дверей и др.).

Трещины корпуса возникают при ударе вследствие нарушения технологии обработки металла корпуса (ударная многократная обработка стали в холодном состоянии), плохого качества сборки при изготовлении или ремонте кузова (значительные механические усилия при соединении деталей), в результате применения низкого качества стали, влияния усталости металла и коррозии с последующей механической нагрузкой, дефектов сборки узлов и деталей, а также недостаточно прочной конструкции узла. Трещины могут образовываться в любой части или детали металлического корпуса, но наиболее часто — в местах, подверженных вибрации.

Разрушения сварных соединений в узлах, детали которых соединены точечной сваркой, а также в сплошных сварных швах кузова могут произойти из-за некачественной сварки или воздействия коррозии и внешних сил: вибрации корпуса под действием динамических нагрузок, неравномерного распределения грузов при погрузке и выгрузке кузовов.

Износ в результате трения встречается в деталях арматуры, осях и отверстиях петель, обивке, в отверстиях заклепочных и болтовых соединений.

Вмятины и выпучины в панелях, а также прогибы и перекосы в кузове появляются вследствие остаточной деформации при ударе или некачественно выполненных работ (сборки, ремонта и т. п.).

Концентрация напряжений в соединениях отдельных элементов корпуса в проемах для дверей, окон, а также на стыках элементов большой и малой жесткости может служить причиной разрушения деталей, если они не усилены.

В конструкциях кузовов обычно предусматриваются необходимые жесткие связи, усиления отдельных участков дополнительными деталями, выдавливанием ребер жесткости. Однако в процессе длительной эксплуатации кузова и в процессе его ремонта могут выявиться отдельные слабые звенья в корпусе кузова, которые требуют усиления или изменения конструкции узлов во избежание появления вторичных поломок.

Так, когда у автобуса ЛAЗ-695 была увеличена жесткость крыши и вследствие этого уменьшился угол закручивания, начались поломки шпангоутов. Поломки прекратились после возвращения к прежней конструкции крыши. Таким образом, конструктивные дефекты возникают как следствие несовершенства конструкции кузова и оперения. К таким дефектам можно отнести: недостаточно жесткое крепление деталей между собой и с каркасом кузова; неправильно выбранный материал; недостаточную герметичность в соединениях, в которые не допускается проникновение влаги (оконной рамы двери, в соединениях между ободком передней фары и крыльями и др.); наличие «карманов» отбортовок, допускающих накопление влаги и грязи; недостаточно жесткие кромки деталей (например, крыльев).

Технологические дефекты возникают как следствие нарушения принятой технологии изготовления или ремонта кузова. К числу наиболее часто встречающихся технологических дефектов кузовов относятся некачественная сварка, нарушение качества исходного материала, некачественное выполнение отдельных операций при изготовлении и ремонте деталей (правки неровностей в панелях кузова, сборки после ремонта и др.).

Ниже для примера приводится перечень повреждений, встречающихся в кузове автомобиля ГАЗ-24 «Волга» (рис. 26).


Рис. 26. Повреждения, встречающиеся в кузове автомобиля ГАЗ-24 ‘Волга’: 1 — трещины на брызговике; 2 — нарушение сварного соединения распорки или брызговика с лонжероном рамы; 3 — трещины на распорке; 4 — трещины на панели передка и брызговиках передних колес; 5 — трещины на стойках ветрового окна; 6 — глубокие вмятины на панели стойки ветрового окна; 7 — перекос проема ветрового окна; 8 — отрыв кронштейна переднего сиденья; 9 — трещины на кожухе основания кузова; 10 — нарушение сварных соединений деталей кузова; 11 — погнутость водосточного желоба; 12 — вмятины на наружных панелях, закрытых деталями с внутренней стороны, неровности оставшиеся после правки или рихтовки; 13 — местная коррозия в нижней части заднего окна; 14 — отрыв стоек задка в местах крепления или трещины на стойках; 15 и 16 — местные коррозии ручья крышки багажника; 17 — отрыв кронштейна замка багажника; 18 — местная коррозия в задней части основания кузова; 19 — вмятины на нижней панели задка кузова в местах крепления задних фонарей; 20 — местная коррозия в нижней части брызговика; 21 — налет коррозии и другие мелкие механические повреждения; 22 — местная коррозия арки колеса; 23 — погнутость брызговика заднего крыла; 24 — нарушение сварного шва в соединении брызговика с аркой; 25, 32 — трещины на основании в местах крепления сидений; 26 — местная коррозия на стойке задней двери и на основании кузова, захватывающая усилитель заднего лонжерона; 77 — трещины на основании кузова в местах крепления кронштейнов задних рессор и другие; 28 — вмятины на панели стойки и погнутость центральной стойки; 29 — отрыв держателей пластин фиксатора и петли Двери кузова; 30 — местная коррозия в нижней части средней стойки боковины; 31 — местная коррозия и трещины лонжеронов основания кузова; 33 — перекосы дверных проемов кузовов; 34 — сплошная коррозия порогов основания; 35 — вмятины на лонжеронах основания кузова (возможны разрывы); 36 — срыв резьбы на пластинах крепления фиксатора и петель двери; 37 — отрыв крышки фиксатора двери; 38 — вмятины (возможно с разрывами) на панели боковины кузова; 39 — местная коррозия в нижней части передней стойки; 40 — нарушение антикоррозионного покрытия; 41 — отрыв гайкодержателей; 42 — погнутость поперечины № 1; 43 — трещины на щитке передка в местах крепления распорки; 44 — отрыв кронштейна крепления передка буфера; 45 — трещины на щитке радиатора; 46 — местная коррозия на раскосе усилителя; 47 — трещины в местах крепления лонжерона; 48 — ослабление заклепочного соединения кронштейна; 49 — выработка отверстий под палец серьги рессоры и переднего кронштейна крепления задней рессоры; 50 — отрыв усилителя лонжерона основания кузова; 51 — износ отверстия крепления амортизатора; 52 — трещины в местах крепления кронштейнов топливного бака; 53 — вмятины с острыми углами или разрывами на нижней панели; 54 — сплошная коррозия на нижней панели задка; 55 — трещины в местах крепления амортизаторов; 56 — трещины на кожухе карданного вала

В зависимости от характера повреждения и от того, как часто оно встречается, принимается решение о целесообразности заранее изготавливать ремонтную деталь (ДР) и способы ее изготовления.

Источник статьи: http://motorzlib.ru/books/item/f00/s00/z0000035/st021.shtml

Занимательная физика. Что происходит с машинами и водителями при столкновении, и правда ли, что внедорожник «безопаснее» легковушки?

Не секрет, что с безопасностью автомобиля связано множество мифов. В форумах, ЖЖ и офлайновых дискуссиях полно советов на тему того, какой автомобиль безопаснее и как лучше себя вести в аварийной ситуации. Большинство этих советов если не бесполезны, то малоосмысленны — человек советует покупать «пятизвездочный» автомобиль по EuroNCAP, а почему, как, собственно, и что эти звезды значат — объяснить не может. В частности, практически никто не понимает, как «звезды» соотносятся с вероятностью серьезно пострадать в аварии конкретного типа и при конкретной скорости. Понятно, что чем больше звезд — тем лучше, но насколько это «лучше» и где проходит безопасный предел? Пользователь LiveJournal 0serg посчитал, как, на чем и куда безопаснее врезаться, и разбил в пух и прах теорию EuroNCAP-овских «звезд».

Один из крайне распространенных мифов состоит в том, что очень часто, когда говорят о лобовом ударе автомобилей, скорости этих автомобилей складывают. Вася ехал 60 км/ч, а со встречки на него вылетел Петя на скорости 100 км/ч, удар — ну и сами понимаете, что там на 100+60 = 160 км/ч от машин осталось. Это — грубейшая ошибка. Реальная «эффективная скорость удара» для машин обычно будет равна приблизительно средней арифметической скоростей Васи и Пети — т.е. около 80 км/ч. И именно эта скорость (а не обывательские 160) и приводит к развороченным автомобилям и человеческим жертвам.

«На пальцах» происходящее можно пояснить таким образом: да, при ударе энергия двух автомобилей суммируется — но и поглощают ее тоже два автомобиля, поэтому на каждый автомобиль приходится лишь половина суммарной энергии удара. Корректный расчет происходящего при ударе доступен даже школьнику, хотя и требует определенной смекалки и воображения. Представим себе, что автомобили в момент удара скользят по ровному шоссе без сопротивления (учитывая, что удар происходит за очень короткое время и действующие на машины силы удара гораздо выше сил трения со стороны асфальта — даже при интенсивном торможении это допущение можно считать вполне справедливым). В этом случае движение при ударе будет полностью описываться одной-единственной силой — силой сопротивления сминаемых корпусов металла. Эта сила, по 3-му закону Ньютона, для обеих машин одинакова, но направлена в противоположные стороны.

Мысленно поставим между машинами тонкий, невесомый лист бумаги. Обе силы сопротивления (первой машины и второй) будут действовать «через» этот лист, но поскольку эти силы равны и противонаправленны, то они полностью компенсируют друг друга. А стало быть, на протяжении всего удара наш лист будет двигаться с нулевым ускорением — или, другими словами, с постоянной скоростью. В инерциальной системе координат, связанной с этим листом, обе машины как бы «врезаются» с разных сторон в этот неподвижный лист бумаги — до тех пор, пока не остановятся либо (одновременно) не отлетят от него. Вспоминаете методику EuroNCAP где машины врезаются в неподвижный барьер? Удар о наш гипотетический «лист бумаги» в нашей специальной системе координат будет равносилен удару о массивный бетонный блок на той же скорости.

Как посчитать скорость листа бумаги? Это довольно просто — достаточно вспомнить механику соударений из школьной программы. В какой-то момент оба автомобиля «останавливаются» относительно системы координат листа бумаги (это происходит в то мгновение, когда автомобили начинают разлетаться в разные стороны), что позволяет нам записать закон сохранения импульса. Считая массу одного автомобиля m1 и скорость v1, а другого — m2 и скорость v2, получаем скорость листа бумаги v по формуле

(m1+m2)*v = m1*v1 — m2*v2

v = m1/(m1+m2)*v1 — m2/(m1+m2)*v2

Для столкновения в «попутном» направлении скорость второй машины следует считать со знаком «минус».
Относительные скорости машин относительно бумаги (т.е. «эквивалентная скорость удара о бетонный блок») соответственно равны

u1 = (v1-v) = m2/(m1+m2) * (v1+v2)

u2 = (v+v2) = m1/(m1+m2) * (v1+v2)

Таким образом, «эквивалентная скорость» лобового удара действительно пропорциональна сумме скоростей автомобилей — однако берется она с неким «поправочным коэффициентом», учитывающим соотношение масс автомобилей. Для автомобилей равной массы он равен 0,5, т.е. суммарную скорость нужно поделить пополам — что и дает нам упомянутое в начале заметки типичное для подобных аварий «среднее арифметическое». В случае столкновения машин разной массы картина будет существенно иной — «тяжелая» машина пострадает меньше, чем «легкая», причем если различия в массе достаточно велики — разница будет колоссальной. Это типичная ситуация для аварий класса «влетела легковушка в груженый грузовик» — последствия такого удара для легковушки близки к последствиям удара на полноценной «суммарной» скорости, в то время как «грузовик» отделывается небольшими повреждениями, т.к. для него «эквивалентная скорость удара» оказывается равной десятой, а то и двадцатой доле суммарной скорости.

Итак, мы научились считать «эквивалентную скорость удара» по очень простой формуле: нужно сложить скорости (для удара в попутном направлении — вычесть), а затем определить, какую долю массы составляет ЧУЖАЯ машина от суммарной массы ваших машин и умножить этот коэффициент на посчитанную скорость. Прикидочные значения коэффициента:

Машины примерно одинаковой весовой категории: 0.5

Малолитражка vs легковушка: малолитражка 0.6, легковушка 0.4

Малолитражка vs джип: малолитражка 0.75, джип 0.25

Легковушка vs джип: легковушка 0.65, джип 0.35

Легковушка vs грузовик: легковушка >0.9, грузовик 0.8, грузовик —>

Источник статьи: http://auto.tut.by/news/offtop/353169.html

Оцените статью
Все про машины