- Устройство автомобилей
- Тормозной привод и его разновидности
- Механический тормозной привод
- Гидравлический тормозной привод
- Пневматический тормозной привод
- Электрический привод тормозов
- Комбинированный тормозной привод
- Устройство и принцип работы электромеханического стояночного тормоза (EPB)
- Функции EPB
- Устройство EPB
- Принцип работы EPB
- Преимущества и недостатки EPB в сравнении с классическим стояночным тормозом
- Особенности обслуживания и эксплуатации автомобилей с EPB
- Заключение
Устройство автомобилей
Тормозной привод и его разновидности
Тормозным приводом называют совокупность устройств, предназначенных для передачи энергии от ее источника к тормозным механизмам и управления этой энергией в процессе передачи с целью осуществления торможения требуемой эффективности.
Тормозной привод – элемент тормозной системы, предназначенный для дистанционного управления тормозными механизмами и (при использовании усилителя) уменьшения мускульного усилия на органах управления.
В задачи тормозного привода входит осуществление следующих функций:
- создание запаса энергии рабочего тела (для систем с пневмоприводом);
- подача энергии к исполнительным органам (тормозным камерам, тормозным цилиндрам);
- регулирует интенсивность торможения.
В зависимости от количества контуров, по которым передается энергия мускульной силы водителя или рабочего тела от управляющего к исполнительному органу, различают одноконтурные, двухконтурные и многоконтурные тормозные приводы.
Двухконтурные и многоконтурные тормозные приводы обычно используются для совмещения функций рабочей тормозной системы с аварийной тормозной системой, поскольку повреждение одного из контуров позволяет сохранять работоспособность общей системы управления торможением автомобиля, хоть и в ограниченном качестве.
Одноконтурные приводы в рабочих тормозных системах современных автомобилей практически не применяются, поскольку это не соответствует требованиям нормативов и стандартов в отношении безопасности движения.
Схемы образования независимых контуров тормозного привода могут быть различными:
- один контур обслуживает тормозные механизмы передних колес, другой – задних (простейшая схема);
- один контур обслуживает тормозные механизмы переднего левого и заднего правого колес, другой – переднего правого и заднего левого (диагональные контуры);
- один контур обслуживает тормозные механизмы всех передних и задних колес, другой – только передних колес;
- один контур обслуживает тормозные механизмы передних колес и заднее правое, другой контур – передние колеса и заднее левое (L-образный контур);
- оба контура обслуживают тормозные механизмы всех колес автомобиля. Такая схема является наиболее надежной, поскольку предусматривает полное сохранение тормозных качеств в случае отказа одного из контуров, но из-за высокой стоимости применяется в основном на дорогих легковых автомобилях.
По типу рабочего тела или виду используемой при торможении энергии тормозные приводы рабочих тормозных систем бывают механическими, гидравлическими, пневматическими, электрическими и комбинированными.
Механический тормозной привод
Механический привод состоит из системы тяг, рычагов, валиков или тросов, позволяющих дистанционно управлять тормозными механизмами автомобиля. Он прост в устройстве, но обладает существенными недостатками, к которым в первую очередь следует отнести:
- сложность дифференцирования тормозных усилий между колесами;
- потери энергии в шарнирах и сочленениях привода, что приводит к необходимости применения значительных усилий при управлении (КПД таких приводов не превышает 0,4…0,6);
- для уменьшения усилия на управляющем органе (педали или рычаге) приходится применять значительное передаточное число привода, что приводит к увеличению хода управляющего органа;
- появление люфтов при износе сопрягаемых деталей привода, что может привести к нестабильному или запоздалому срабатыванию;
- необходимость в частых регулировках и обслуживании;
- сложность защиты привода от воздействий внешней среды (механические повреждения, коррозия, обледенение и т. п.);
- усложнение конструкции привода и, как следствие, снижение его надежности при значительной базе автомобиля и сложной конфигурации кузова (несущей системы), а также при применении в многоосных автомобилях и автопоездах.
В настоящее время механический привод встречается только в конструкциях стояночной тормозной системы автомобилей. В этом случае используется неоспоримое преимущество механического привода – способность неограниченно долго сохранять заданное усилие.
Гидравлический тормозной привод
Гидравлический привод имеет более сложное устройство, чем механический, поскольку в его конструкции присутствуют сложные гидравлические узлы и приборы (гидроцилиндры, регуляторы и т. п.). Тем не менее, он выгодно отличается от механического привода удобством передачи энергии (тормозные трубки можно проложить где угодно и как угодно), а также возможностью использовать усилители для уменьшения усилия на управляющем органе тормозной системы.
По сравнению с пневматическим приводом гидравлический срабатывает значительно быстрее благодаря малой сжимаемости жидкости. При нормальной температуре жидкости КПД гидравлического привода составляет 0,85…0,9.
Основные недостатки гидропривода:
- возможность попадания воздуха в гидравлический привод и образования паровых пробок, что резко снижает эффективность его работы вплоть до отказа;
- снижение КПД при низких температурах из-за увеличения вязкости жидкости;
- вероятность закипания жидкости при длительном торможении (например, на затяжных спусках);
- применение в качестве рабочего тела жидкостей, способных нанести вред окружающей среде, растительному и животному миру, а также человеку.
В качестве усилителей гидравлических приводов обычно применяются устройства, использующие энергию вакуума из всасывающего трубопровода системы питания двигателя. Такие устройства обладают существенным недостатком – они не способны накапливать энергию, и при остановке двигателя эффективность работы тормозной системы резко падает.
В некоторых автомобилях для работы усилителей используют энергию сжатого воздуха, нагнетаемого специальными компрессорными установками, но такие приводы существенно усложняют конструкцию тормозной системы и применяются ограниченно.
Из-за отмеченных недостатков гидроприводы тормозных механизмов применяются только в легковых автомобилях и грузовиках малой и средней грузоподъемности.
На современных автомобилях в состав гидравлического привода тормозов могут входить различные электронные системы: антиблокировочная система тормозов (АБС), усилитель экстренного торможения, система распределения тормозных усилий, электронная блокировка дифференциала и т. п.
Пневматический тормозной привод
Пневматический привод намного сложнее и дороже механического и гидравлического приводов, но обладает существенными преимуществами:
- не нуждается в применении усилителей, поскольку энергии сжатого воздуха достаточно для срабатывания тормозных механизмов любой мощности;
- в качестве рабочего тела не используются токсичные и вредные жидкости и газы (преимущество перед гидравлическим приводом);
- не боится попадания в систему воздуха, как гидравлический привод;
- способен накапливать запас энергии сжатого воздуха для расходования ее в автономном режиме, при неработающем двигателе;
- трубопроводы для подвода сжатого воздуха можно проложить в соответствии с требуемой компоновкой тормозной системы (преимущество перед механическим приводом).
Подобно гидравлическому, пневматический тормозной привод может разделяться на отдельные автономные контуры.
Основными недостатками пневматического привода являются:
- высокая стоимость (тормозной привод одиночного автомобиля «КамАЗ» включает 25 аппаратов, 6 ресиверов и 70 метров трубопроводов);
- относительно большое время срабатывания и растормаживания (время срабатывания у одиночных автомобилей – 0,4…0,7 с, у автопоездов – до 1,5 с);
- дополнительный шум при работе;
- образование водяного конденсата в трубопроводах, способного закупорить их при низких температурах ледяными пробками.
Благодаря способности снижать усилие на управляющих органах тормозных механизмов, а также возможности накапливать энергию для автономной работы, пневматические приводы тормозов получили широкое распространение на грузовых автомобилях и автобусах полной массой более 9 т.
Электрический привод тормозов
Электрический тормозной привод использует для работы энергию электрического тока и электромагнитного поля. Такой привод для эффективной работы требует наличия мощных и емких источников электрического тока.
Поскольку на автомобилях электрическая энергия вырабатывается в ограниченном количестве для обеспечения работы системы электрооборудования, электрический привод тормозов не получил распространения в автотранспортных средствах. Очень редко такой привод можно встретить в конструкции тормозных систем легковых прицепов.
Комбинированный тормозной привод
Комбинированный тормозной привод представляет собой комбинацию двух или даже нескольких типов привода. Так, например, на автомобилях может применяться электропневматический привод, пневмогидравлический привод и т. п. Комбинированные приводы тормозов практически не применяются на автотранспортных средствах из-за сложности конструкции.
Источник статьи: http://k-a-t.ru/avto_shassi_2/7-tormoza_3/index.shtml
Устройство и принцип работы электромеханического стояночного тормоза (EPB)
Важной частью любого автомобиля является стояночный тормоз, который фиксирует автомобиль на месте во время стоянки и предупреждает его непроизвольное откатывание назад или вперед. Современные автомобили все чаще стали оснащаться электромеханическим типом стояночного тормоза, в котором электроника заменяет привычный “ручник”. Аббревиатура электромеханического стояночного тормоза “EPB” расшифровывается как Electromechanical Parking Brake. Рассмотрим основные функции EPB и его отличия от классического стояночного тормоза. Разберем элементы устройства и принцип его работы.
Функции EPB
К главным функциям EPB относятся:
- удержание транспортного средства на месте при стоянке;
- аварийное торможение при выходе из строя рабочей тормозной системы;
- предотвращение отката автомобиля при старте на подъеме.
Устройство EPB
Электромеханический ручник устанавливается на задние колеса автомобиля. Конструктивно он состоит из следующих элементов:
- тормозной механизм;
- привод;
- электронная система управления.
Схема управления электромеханическим стояночным тормозом
Тормозной механизм представлен штатными дисковыми тормозами автомобиля. Конструктивные изменения коснулись только рабочих цилиндров. На суппорте тормозного механизма устанавливается привод стояночного тормоза.
Электропривод ручника состоит из следующих частей, находящихся в одном корпусе:
- электродвигатель;
- ременная передача;
- планетарный редуктор;
- винтовой привод.
Электродвигатель посредством ременной передачи приводит в движение планетарный редуктор. Последний, снижая уровень шума и массу привода, воздействует на перемещение винтового привода. Привод, в свою очередь, отвечает за поступательное движение поршня тормозного механизма.
Электронный блок управления состоит из:
- входных датчиков;
- блока управления;
- исполнительных механизмов.
Входные сигналы поступают в блок управления, как минимум, с трех элементов: с кнопки включения ручника (располагаемой на центральной консоли автомобиля), с датчика уклона (интегрирован в сам блок управления) и с датчика педали сцепления (расположенного на приводе сцепления), который фиксирует положение и скорость отпускания педали сцепления.
Блок управления через сигналы датчиков воздействует на исполнительные устройства (такие, как электродвигатель привода, например). Таким образом, блок управления напрямую взаимодействует с системами управления двигателем и курсовой устойчивости.
Принцип работы EPB
Принцип работы электромеханического стояночного тормоза имеет циклический характер: он то включается, то выключается.
EPB включается с помощью кнопки на центральном тоннеле в салоне автомобиля. Электродвигатель посредством редуктора и винтового привода притягивает тормозные колодки к тормозному диску. При этом происходит жесткая фиксация последнего.
Принцип работы EPB в виде карикатуры
А выключается стояночный тормоз во время старта автомобиля. Это действие происходит автоматически. Также электронный ручник можно выключить, нажав на кнопку при уже нажатой педали тормоза.
В процессе выключения EPB блоком управления анализируются такие параметры, как: величина уклона, положение педали газа, положение и скорость отпускания педали сцепления. Благодаря этому и становится возможным своевременное выключение EPB, включая выключение с временной задержкой. Это предотвращает откат транспортного средства назад при старте на подъеме.
Большинство автомобилей, оснащенных EPB, рядом с кнопкой ручного тормоза имеют кнопку автоматического удержания транспортного средства при временной остановке (Auto Hold). Это очень удобно для автомобилей с АКПП. Особенно актуальна данная функция в городских пробках с частыми остановками и стартами. При нажатии водителем кнопки «Auto Hold» отпадает необходимость удерживать нажатой педаль тормоза после остановки автомобиля.
При длительном неподвижном положении EPB включается автоматически. Электрический стояночный ручник также включится автоматически, если водитель выключит зажигание, откроет дверь или отстегнет ремень безопасности.
Преимущества и недостатки EPB в сравнении с классическим стояночным тормозом
Для наглядности плюсы и минусы EPB по сравнению с классическим ручником представим в виде таблицы:
Преимущества EPB | Недостатки EPB |
---|---|
1. Компактная кнопка вместо громоздкого рычага | 1. Механический стояночный тормоз позволяет регулировать усилие торможения, что недоступно для EPB |
2. В процессе эксплуатации EPB нет необходимости в его регулировке | 2. При полностью разряженном аккумуляторе невозможно «снять с ручника» |
3. Автоматическое выключение EPB при старте автомобиля | 3. Более высокая стоимость |
4. Отсутствие отката автомобиля на подъеме |
Особенности обслуживания и эксплуатации автомобилей с EPB
Для проверки работоспособности EPB автомобиль необходимо установить на тормозной стенд и провести торможение стояночным тормозом. При этом проверку необходимо проводить регулярно.
Замена тормозных колодок осуществляется только при отпущенном стояночном тормозе. Процесс замены происходит при помощи диагностического оборудования. Колодки автоматически устанавливаются в нужное положение, фиксирующееся в памяти блока управления.
Нельзя оставлять автомобиль на стояночном тормозе в течение длительного времени. При длительной стоянке может разрядиться аккумулятор, вследствие чего автомобиль будет невозможно снять с ручника.
Перед проведением технических работ необходимо перевести в сервисный режим электронику автомобиля. В противном случае электрический ручник может автоматически включиться во время обслуживания или ремонта транспортного средства. Это, в свою очередь, может привести к повреждению автомобиля.
Заключение
Электромеханический стояночный тормоз освобождает водителя от проблемы под названием «забыл снять машину с ручника». Благодаря EPB с началом движения этот процесс происходит автоматически. Помимо этого он облегчает старт автомобиля в гору и существенно упрощает водителям жизнь в пробках.
Источник статьи: http://techautoport.ru/hodovaya-chast/tormoznaya-sistema/elektromehanichesky-stoyanochny-tormoz.html