Электрические и электрогидравлические рулевые машины
Электрические рулевые машины широко применяются на судах сравнительно небольшого водоизмещения. В качестве исполнительного рулевого двигателя они имеют электродвигатель, соединенный с червячной передачей, передающей крутящий момент на зубчатый сектор баллера руля и позволяющей значительно уменьшить частоту вращения рулевого привода. Кроме того, самотормозящая червячная пара (червяк и червячное колесо) при остановке электродвигателя обеспечивает остановку руля. Исполнительный электродвигатель управляется из рулевой рубки нажатием кнопки или вращением штурвала.
Электрогидравлические рулевые машины наибольшее распространение получили на отечественных судах современной постройки. По сравнению с другими видами машин они имеют ряд преимуществ, важнейшими из которых являются: получение больших крутящих моментов, малые массы и габариты на единицу мощности, плавное изменение скорости перекладки руля, высокий КПД.
Машины серии Р разработаны на основе типизированной конструкции, включающей 14 типоразмеров рулевых машин, входящих в пять конструктивных групп и рассчитанных на крутящий момент 6,3— 1600 кН·м (0,03—160 тс·м). На рис. 2 показана схема электрогидравлической рулевой машины. Основные узлы машины: привод к баллеру А; электронасосы регулируемой производительности Б с приводом от электродвигателя; механизм управления насосами В со штурвальной тумбой; трубопроводы рабочего масла Д с главной клапанной коробкой; теледвигатели Г, предназначенные для гидравлического управления рулевой машиной с удаленных постов управления № 1 и № 2.
Электронасосы регулируемой производительности подают масло в гидравлические цилиндры под давлением до 15 тыс. кН/м 2 (150 кгс/см 2 ). В показанном на схеме положении рабочее масло по трубам 5 и 6 нагнетается насосом Б регулируемой производительности в главную коробку 7, а из нее по трубам 4 и 8 — направляется в два гидравлических цилиндра 2, расположенных по диагонали. В это время из противоположных полостей другой пары цилиндров масло отсасывается вторым насосом регулируемой производительности. Под давлением масла плунжеры 1 перемещаются вдоль осей цилиндров, передавая усилия на цапфы 9 поперечного румпеля 10, и поворачивают баллер А руля. Поворот руля (в данном случае на правый борт) будет происходить до тех пор, пока тяга 3 не возвратит направляющее кольцо насоса регулируемой производительности в среднее положение. При этом подача масла в гидравлические цилиндры прекратится, и руль будет зафиксирован в заданном положении.
На рис. 3 показано устройство насоса регулируемой производительности. Насос состоит из нечетного числа звездообразно расположенных цилиндров 1, представляющих собой одну общую отливку и вращающихся в одном направлении. Неподвижная перегородка 9 делит центральную часть на две полости, к которым подведены трубы 3 и 8. При вращении ротора каждый цилиндр своим нижним открытым концом попеременно сообщается с трубами.
В цилиндрах перемещаются скалки 2, шарнирно соединенные с ползунами 5, которые скользят по внутренней поверхности кольца 4, служащего направляющей для ползунов. Кольцо может перемещаться вправо или влево при помощи цапф 7 и 10, проходящих через станину 6 насоса. Когда кольцо 4 перемещено вправо (рис. 3, а), при вращении ротора с цилиндрами против часовой стрелки всасывание будет осуществляться по трубе 8, а нагнетание — по трубе 3. Если кольцо займет крайнее левое положение (рис. 3, б), назначение труб изменится. При среднем положении кольца (рис. 3, в) расстояния от оси вращения ротора до внутренней поверхности кольца будут по радиальным направлениям одинаковы, поэтому скалки в цилиндрах перемещаться не будут и насос перестанет подавать масло. Следовательно, путем перемещения кольца 4 из среднего положения в любое крайнее можно регулировать производительность насоса от нулевой до максимальной и изменять направление жидкости в трубопроводе.
Привод к баллеру руля (рис. 4) расположен в румпельном помещении судна. Он передает от рулевой машины непосредственно на баллер усилие, необходимое для поворота руля. Для этого предназначены четыре (или два) гидравлических цилиндра 3, соединенных посредством двух поперечных 2 и двух продольных 4 балок в один общий блок. Крепление блока к фундаменту производится лапами 1 цилиндра 3.
В цилиндрах расположены плунжеры 6, перемещающиеся вдоль оси цилиндра под давлением масла и шарнирно соединенные при помощи цапф 7 с румпелем 8. Румпель с помощью шпонок жестко соединен с баллером руля. Для уменьшения нагрузки от боковых усилий, возникающих при повороте румпеля, плунжеры 6 снабжены ползунами 5, скользящими по направляющим плоскостям продольных балок. При повороте румпеля его цапфы 6 перемещаются в шарнирах 9, цапфы которых при этом могут вращаться в отверстиях вилок плунжеров вокруг оси. Таким образом, обеспечивается свободный поворот румпеля, а вместе с ним и руля при продольном перемещении плунжеров в гидравлических цилиндрах привода.
Гидравлический теледвигатель Г (см. рис. 2) состоит из двух цилиндров с поршнями. Один из цилиндров (передаточный) установлен на ходовом мостике, второй (приемный) — у рулевой машины. Полости цилиндров соединены трубопроводами, вся система заполнена жидкостью — обычно смесью воды с глицерином (глицерин предупреждает замерзание воды в зимнее время).
Вращение штурвала передается поршню передаточного цилиндра, вызывая его перемещение и увеличение давления жидкости на поршень приемного цилиндра, который вследствие этого перемещается, воздействуя через систему тяг на насосы регулируемой производительности, соединенные трубопроводом рабочего масла с приводом баллера руля. Таким образом, все основные узлы электрогидравлической рулевой машины оказываются соединенными между собой соответствующей аппаратурой и трубами рабочего масла и управления теледвигателем. Смазочное масло к трущимся частям рулевой машины подается по отдельному трубопроводу.
Источник статьи: http://www.stroitelstvo-new.ru/sudostroenie/slesar/rulevye-mashiny.shtml
Рулевые машины
Рулевые машины по виду используемой энергии делятся на ручные, паровые, электрические и гидравлические. Часто применяют различные комбинации этих основных типов: пароручные, парогидравлические, ручные гидравлические и электрогидравлические.
Ручные рулевые машины устанавливают только на небольших самоходных судах. Как правило, их комбинируют со штуртросовой проводкой или валиковой передачей. Конструкция этих машин довольно проста и включает в себя штурвальную тумбу, внутри которой располагается зубчатая передача (ведущая и ведомая шестерни), тяговый барабан (при штуртросовой проводке) или звездочки (при цепном штуртросе). Вся система приводится в движение от штурвального колеса, поворачиваемого руками штурвального. Процесс управления судном в этом случае становится довольно утомительным и требует от штурвального большой внимательности. Для облегчения его работы ранее применялись пароручные рулевые машины, которые, как правило, изготовлялись двухцилиндровыми в вертикальном или горизонтальном исполнении. На современных судах паровые рулевые машины полностью вытеснены ручными гидравлическими плунжерными рулевыми машинами, облегчающими и упрощающими управление судном.
Схема ручной гидравлической рулевой машины приведена на рис. 112. Внутри штурвальной тумбы 8 смонтирован ручной масляный нагнетательный насос 7, приводимый в действие вращением штурвала 9. При помощи труб 1 насос соединяется с двумя гидравлическими цилиндрами 2 рулевой машины. В цилиндрах перемещается плунжер 10, связанный с баллером 5 руля 6 посредством регистра 3 и румпеля 4. В зависимости от направления вращения штурвала масло подается насосом в один из цилиндров, и руль соответственно перекладывается на тот или иной борт. Обводной трубопровод 1 снабжается предохранительным клапаном 11, предназначенным для перепуска масла при повышении давления в системе выше номинального.
Рис. 112. Схема ручной гидравлической румпельной рулевой машины.
Ручные гидравлические машины создают небольшие крутящие моменты на баллере руля (2500—10 000 н · м) и очень редко снабжаются следящей системой контроля за перекладкой руля, поэтому они применяются в основном для судов малого водоизмещения. На средне- и крупнотоннажных судах находят широкое применение электрические, гидравлические и электрогидравлические рулевые машины большой мощности, снабженные следящими системами контроля и позволяющие автоматизировать управление ими.
Электрические рулевые машины, широко распространенные на судах транспортного флота, имеют в качестве исполнительного рулевого двигателя реверсивный электродвигатель с большой частотой вращения (до 3000 об/мин). Поэтому исполнительный электродвигатель спаривают с червячной передачей, передающей крутящий момент на зубчатый сектор баллера руля и позволяющей значительно уменьшить частоту вращения рулевого привода. Кроме того, самотормозящая червячная пара (червяк и червячное колесо) при остановке электродвигателя обеспечивает остановку руля.
Исполнительный электродвигатель управляется из рулевой рубки нажатием кнопки или вращением штурвала. При кнопочном управлении электродвигатель запускается нажатием кнопки соответствующего борта и вращается в определенном направлении до тех пор, пока кнопка не будет отпущена. Управление штурвалом обеспечивает курсозависимое дистанционное управление, т. е. управление, при котором угол отклонения руля соответствует отклонениям указателя положения руля при штурвальной тумбе.
Электрические рулевые машины изготовляют для работы как rfa постоянном, так и на переменном токе. Обычно их используют при диапазоне крутящих моментов на баллере от 6300 до 16 000 н-м, т. е. в основном для судов среднего водоизмещения.
Электрогидравлические рулевые машины, устанавливаемые на современных крупных морских судах и быстроходных судах среднего водоизмещения, имеют гидравлический привод баллера руля (рис. 113). Такой привод располагается в румпельном помещении судна и передает от рулевой машины непосредственно на баллер руля усилие, необходимое для его поворота. Для этой цели служат четыре (или два) гидравлических цилиндра 3, соединенных посредством двух поперечных 2 и двух продольных 4 балок в один общий блок. Крепление блока к судовому фундаменту производится лампами 1 цилиндра 3.
Рис. 113. Гидравлический привод баллера руля.
В цилиндрах располагаются плунжеры 6, перемещающиеся вдоль оси цилиндров под давлением масла, шарнирно соединенные при помощи цапф 7 с поперечным румпелем 8. Румпель, при помощи шпонок жестко соединяется с баллером 9 руля. Для
уменьшения нагрузки от боковых усилий, возникающих при повороте румпеля, плунжеры 6 имеют ползуны 5, скользящие по направляющим плоскостям продольных балок. При повороте румпеля его цапфы 7 перемещаются в шарнирах 11 (см. узел А), цапфы 10 которых при этом могут вращаться в отверстиях вилок плунжеров вокруг оси I—I. Таким образом обеспечивается свободный поворот румпеля, а вместе с ним и руля при продольном перемещении плунжеров в гидравлических цилиндрах привода.
В состав электрогидравлической рулевой машины (рис. 114), кроме гидравлического привода А, входят следующие основные узлы: масляные электронасосы переменной производительности Б; механизм В управления насосами переменной производительности; масляный трубопровод Д с главной клапанной коробкой; телемоторы Г, предназначенные для гидравлического управления рулевой машиной с дистанционных постов управления № 1 я № 2; ручной (аварийный) масляный насос и система указателей положения руля (на схеме не показаны).
Рис. 114. Схема электрогидравлической рулевой машины.
Устройство и принцип действия электронасосов Б переменной производительности были рассмотрены ранее в § 29 (см. рис. 94).
Эти насосы подают масло под Давлением до 15 000 кн/м 2 (150 кгс/см 2 ) в гидравлические цилиндры привода А в зависимости от расположения направляющего кольца насоса. В указанном положении (рис. 114) рабочее масло по трубам 5 и 6 нагнетается насосом переменной производительности Б в главную коробку 7, а из нее по трубам 4 и 8 направляется в два гидравлических цилиндра 2, расположенных по диагонали. В это время из другой пары цилиндров масло отсасывается вторым насосом переменной производительности. Под давлением масла плунжеры 1 перемещаются вдоль осей цилиндров, передавая усилия на цапфы 9 поперечного румпеля 10 и поворачивая баллер 11 руля. Поворот руля (в данном случае на правый борт) будет происходить до тех пор, пока тяга 3 не возвратит направляющее кольцо насоса переменной производительности в среднее положение. При этом подача масла в гидравлические цилиндры прекратится и руль будет зафиксирован в заданном положении.
Гидравлический телемотор Г состоит из двух цилиндров с поршнями. Один из цилиндров (передаточный) установлен на ходовом мостике, другой (приемный) — у рулевой машины. Полости цилиндров соединены трубопроводом, вся система заполнена жидкостью— обычной водой с глицерином. Вращение штурвала передается поршню передаточного цилиндра, вызывая его перемещение и увеличение давления жидкости на поршень приемного цилиндра. В результате этого поршень приемного цилиндра перемещается, воздействуя при помощи системы тяг на насосы переменной производительности, связанные трубопроводом рабочего масла с гидравлическим приводом баллера. Таким образом, все основные узлы электрогидравлической рулевой машины соединяются между собой трубопроводом, который состоит из труб рабочего масла, труб управления телемотором, труб смазочного масла и арматуры. По трубам смазочного масла подается смазка к трущимся частям рулевой машины.
Наиболее важной арматурой является главная распределительная коробка, в которой размещены четырнадцать клапанов: восемь разобщительных — по четыре клапана для насосов переменной производительности и для гидравлических цилиндров привода, четыре перепускных и два предохранительных. Все эти клапаны служат для регулирования подачи рабочего масла к механизмам рулевой машины и предохранения всей системы от повышенного давления масла.
Электрогидравлические плунжерные рулевые машины находят в настоящее время преимущественное применение по сравнению с другими типами рулевых машин. Это объясняется тем, что они имеют более гибкое регулирование скоростей в широком диапазоне и точный контроль положения руля. Отечественные рулевые машины такого типа выполняются в двух вариантах: двухцилиндровые— с вращающим моментом на баллере до 100 кн-м (10 тс-м) и четырехцилиндровые — с вращающим моментом от 160 до 2000 кн-м (от 16 до 200 тс-м). Рабочее давление масла у таких машин колеблется от 7000 до 15 000 кн/м 2 (от 70 до 150 кгс/см 2 ).
В последнее время на малых промысловых и транспортных судах (дедвейтом 25 000—29 000 т) стали применять лопастные, или крыльчатые, электрогидравлические рулевые машины. По сравнению с плунжерными такие машины значительно компактнее, проще и легче, у них отсутствуют массивные гидравлические приводы, отпадает необходимость в румпеле и т. д.
В состав лопастной электрогидравлической рулевой машины (рис. 115, а) входят: рулевая тумба 1 со штурвалом и телемотором, трубопровод 2, клапан остановки 3, насос переменной производительности 4 с электродвигателем 5, контактор 6 для пуска электродвигателя, лопастной гидромотор 7 и главная распределительная коробка 8. Ротор гидромотора (рис. 115, б), снабженный лопастями, непосредственно соединяется с баллером руля, а его лопасти располагаются между неподвижными сегментами. В эти полости от насоса 4 через каналы 10 и кольцевой зазор 9 подается рабочая жидкость под давлением 4500— 5000 кн/м 2 (45—50 кгс/см 2 ), которая давит на лопасти, создавая необходимый вращающий момент на баллере. Поворот руля на правый или левый борт зависит от направления подачи рабочей жидкости (масла) к гидромотору. Гидромотор крепится к судовому фундаменту основанием 11.
Рис. 115. Схема лопастной электрогидравлической рулевой машины.
Большой интерес представляет применение в качестве привода баллера гидравлического шарнира, представляющего собой винтовое соединение вала баллера с подвижной гайкой, помещенной в гидравлическом цилиндре. Гайка специальными выступами соединяется с цилиндрической стальной рубашкой, закрепленной при помощи шпонок на валу баллера. При подаче рабочей жидкости в одну из полостей между корпусом цилиндра и гайкой жидкость давит на кольцевой фланец гайки, заставляя ее совершать вращательно-поступательное движение вдоль внутренней стенки цилиндра, имеющей винтовую нарезку. Вращательное движение гайки через рубашку передается на баллер. Совмещение гидравлического шарнира с баллером делает привод компактным и позволяет практически отказаться от румпельного отделения.
При использовании электрогидравлических рулевых машин на современных судах стало возможным применение системы автоматического удержания судна на заданном курсе с помощью авторулевого. Этот прибор, компонуемый в виде штурвальной тумбы, автоматически воздействует на рулевой привод при получении сигнала от датчика курса (обычно гирокомпаса).
Источник статьи: http://www.stroitelstvo-new.ru/sudostroenie/mmu/rulevye-mashiny.shtml