Система управления двигателем
Системой управления двигателем называется электронная система управления, которая обеспечивает работу двух и более систем двигателя. Система является одним из основных электронных компонентов электрооборудования автомобиля.
Генератором развития систем управления двигателем в мире является немецкая фирма Bosch. Технический прогресс в области электроники, жесткие нормы экологической безопасности обусловливают неуклонный рост числа подконтрольных систем двигателя.
Свою историю система управления двигателем ведет от объединенной системы впрыска и зажигания. Современная система управления двигателем объединяет значительно больше систем и устройств. Помимо традиционных систем впрыска и зажигания под управлением электронной системы находятся: топливная система, система впуска, выпускная система, система охлаждения, система рециркуляции отработавших газов, система улавливания паров бензина, вакуумный усилитель тормозов.
Термином «система управления двигателем» обычно называют систему управления бензиновым двигателем. В дизельном двигателе аналогичная система называется система управления дизелем.
Система управления двигателем включает входные датчики, электронный блок управления и исполнительные устройства систем двигателя.
Входные датчики измеряют конкретные параметры работы двигателя и преобразуют их в электрические сигналы. Информация, получаемая от датчиков, является основой управления двигателем. Количество и номенклатура датчиков определяется видом и модификацией системы управления. Например, в системе управления двигателем Motronic-MED применяются следующие входные датчики: давления топлива в контуре низкого давления, давления топлива, частоты вращения коленчатого вала, Холла, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Каждый из датчиков используется в интересах одной или нескольких систем двигателя.
Электронный блок управления двигателем принимает информацию от датчиков и в соответствии с заложенным программным обеспечением формирует управляющие сигналы на исполнительные устройства систем двигателя. В своей работе электронный блок управления взаимодействует с блоками управления автоматической коробкой передач, системой ABS (ESP), электроусилителя руля, подушками безопасности и др.
Исполнительные устройства входят в состав конкретных систем двигателя и обеспечивают их работу. Исполнительными устройствами топливной системы являются электрический топливный насос и перепускной клапан. В системе впрыска управляемыми элементами являются форсунки и клапан регулирования давления. Работа системы впуска управляется с помощью привода дроссельной заслонки и привода впускных заслонок.
Катушки зажигания являются исполнительными устройствами системы зажигания. Система охлаждения современного автомобиля также имеет ряд компонентов, управляемых электроникой: термостат (на некоторых моделях двигателей), реле дополнительного насоса охлаждающей жидкости, блок управления вентилятора радиатора, реле охлаждения двигателя после остановки.
В выпускной системе осуществляется принудительный подогрев кислородных датчиков и датчика оксидов азота, необходимый для их эффективной работы. Исполнительными устройствами системы рециркуляции отработавших газов являются электромагнитный клапан управления подачей вторичного воздуха, а также электродвигатель насоса вторичного воздуха. Управление системой улавливания паров бензина производится с помощью электромагнитного клапан продувки адсорбера.
Принцип работы системы управления двигателем основан на комплексном управлении величиной крутящего момента двигателя. Другими словами, система управления двигателем приводит величину крутящего момента в соответствия с конкретным режимом работы двигателя. Система различает следующие режимы работы двигателя:
- запуск;
- прогрев;
- холостой ход;
- движение;
- переключение передач;
- торможение;
- работа системы кондиционирования.
Изменение величины крутящего момента производиться двумя способами — путем регулирования наполнения цилиндров воздухом и регулированием угла опережения зажигания.
Источник статьи: http://systemsauto.ru/electric/control_engine.html
Лекция № 7 — Микропроцессорные системы управления автомобиля
Введение
В настоящее время техническая оснащенность автомобиля различными электронными системами значительно возросла. Последние достижения в области электроники и микропроцессоров способствовали повышению надежности, эргономичное TM и безопасности автомобиля.
Доля электроники в автомобилях постоянно увеличивается — в 2000 году на нее приходилось 22% стоимости автомобиля, а в 2010 — 35%.
Еще более возрастает роль электронных и микропроцессорных систем, которые во многом определяют активную и пассивную безопасность автомобиля. Так 1 июля 2004 года в Европейском союзе вступило в силу коллективное обязательство автопроизводителей не поставлять на рынок автомобили без антиблокировочных систем. Как ожидается, вскоре аналогичное решение будет принято и по подушкам безопасности.
Не меньшее внимание уделяется экологическим показателям автомобиля, выполнить которые без микропроцессорного управления силовым агрегатом невозможно.
1. Общие сведения об электронных и микропроцессорных системах автомобиля
Понятие электронной системы является более общим, нежели понятие микропроцессорной системы. В самом общем смысле под электронной системой понимается система, построенная на радиоэлектронных элементах.
Электронная система автомобиля — система (узел) автомобиля, алгоритм функционирования которой определяется принципиальной электрической схемой блока управления или всего узла. При этом технически электронный блок управления (ЭБУ) или весь узел может быть выполнен на дискретных и (или) интегральных радиоэлементах, а изменение алгоритма работы системы или узла невозможно без изменения электрической схемы.
Микропроцессорная система автомобиля — система автомобиля, алгоритм функционирования которой определяется программой процессора электронного блока управления (ЭБУ). Таким образом, в данной системе всегда есть блок управления на основе микропроцессора и для изменения алгоритма работы системы требуется изменить программу микропроцессора.
Основные компоненты электронных и микропроцессорных систем автомобиля.
Современный автомобиль обладает значительным количеством электронных и микропроцессорных систем различного назначения и уровня сложности, что определило разнообразие в элементной базе устройств и технологиях их изготовления.
Рассмотрим основные критерии классификации электронных компонентов автомобиля.
По типу элементов: дискретные и интегральные электронные компоненты.
По типу рабочего сигнала: цифровые и аналоговые компоненты.
По условиям применения: стандартные (универсальные) и специальные компоненты.
Более подробно рассмотрим интегральные микросхемы (ИС), которые в настоящее время являются преобладающими в автомобильной электронике.
В подавляющем большинстве сейчас используются монолитные интегральные микросхемы (1С- integrated circuit), то есть выполненные на едином кристалле полупроводника (чаще кремния) по планарной технологии. Данная технология позволяет производить в микросборке все полупроводниковые элементы, а также пассивные компоненты, такие как резисторы и конденсаторы.
Выделяют пять уровней интеграции микросхем:
В настоящее время производятся последние три группы интегральных микросхем. Аналоговые интегральные микросхемы чаще всего делятся по назначению: операционные усилители, стабилизаторы напряжения, усилители низкой частоты, компараторы и т. д.
Цифровые интегральные микросхемы имеют, как правило, два критерия классификации:
— по технологии полупроводников: биполярные, на основе полевых транзисторов и гибридные.
— по назначению: логические, триггеры, регистры, шифраторы, мультиплексоры, микросхемы памяти, высокомощные микросхемы.
Отдельным классом цифровых интегральных микросхем стоят микропроцессоры.
Микропроцессор (МП) — это программно управляемое устройство, осуществляющее процесс обработки цифровой информации и управление этим процессом, реализованное в одной или нескольких больших интегральных схемах (БИС).
Микропроцессорная ЭВМ (или микроЭВМ) — это ЭВМ, включающая микропроцессор, полупроводниковую память, средства связи с периферийными устройствами и, при необходимости, пульт управления и блок питания, объединенные одной несущей конструкцией.
В зависимости от способа конструирования микроЭВМ делят на:
— однокристальные, выполненные на одном кристалле,
— одноплатные, реализованные на одной плате,
— многоплатные, когда микропроцессор и основная память располагаются на одной плате, средства связи с периферийными устройствами — на других.
Микропроцессорная система (МПС) — информационная, измерительная, управляющая или другая специализированная цифровая система, включающая микроЭВМ и средства сопряжения с обслуживаемым объектом.
Программное обеспечение МПС (ПО МПС) — совокупность программ, которые находятся в памяти системы и реализуют алгоритм функционирования системы.
2. Системы управления двигателем
2.1 Основные принципы управления двигателем
Автомобильный двигатель представляет собой систему, состоящую из отдельных подсистем: системы топливоподачи, зажигания, охлаждения, смазки ит.д. Все системы связаны друг с другом и при функционировании они образуют единое целое.
Управление двигателем нельзя рассматривать в отрыве от управления автомобилем. Скоростные и нагрузочные режимы работы двигателя зависят от скоростных режимов движения автомобиля в различных условиях эксплуатации, которые включают в себя разгоны и замедления, движение с относительно постоянной скоростью, остановки.
Водитель изменяет скоростной и нагрузочный режим двигателя, воздействуя на дроссельную заслонку. Выходные характеристики двигателя при этом зависят от состава топливо-воздушной смеси и угла опережения зажигания, управление которыми обычно осуществляется автоматически .
Схема двигателя как объекта автоматического управления приведена на рис.2.
Входные параметры (угол открытия дроссельной заслонки j др, угол опережения зажигания q , цикловой расход топлива Gт и др.) — это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.
Выходные параметры, называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент Ме, показатель топливной экономичности gе и токсичности отработавших газов (например, содержания СО), а также многие другие.
Кроме входных управляющих параметров, на двигатель во время его работы воздействуют случайные возмущения, которые мешают управлению. К случайным возмущениям можно отнести изменение параметров состояния внешней среды (температура Т, атмосферное давление р, влажность), свойств топлива и масла и т.д.
Для двигателя внутреннего сгорания характерна периодическая повторяемость рабочих циклов. Как объект управления двигатель считается нелинейным, так как реакция на сумму любых внешних воздействий не равна сумме реакций на каждое из воздействий в отдельности. Учитывая, что двигатель в условиях городской езды работает на нестационарных режимах, возникает проблема оптимального управления им. Возможность оптимального управления двигателем на нестационарных режимах появилась с развитием электронных систем управления.
Управление двигателем нельзя рассматривать в отрыве от управления автомобилем. Скоростные и нагрузочные режимы работы двигателя зависят от скоростных режимов движения автомобиля в различных условиях эксплуатации, которые включают в себя разгоны и замедления, движение с относительно постоянной скоростью, остановки.
Водитель изменяет скоростной и нагрузочный режим двигателя, воздействуя на дроссельную заслонку. Выходные характеристики двигателя при этом зависят от состава топливо-воздушной смеси и угла опережения зажигания, управление которыми обычно осуществляется автоматически.
Входные параметры — это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.
Выходные параметры, называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент, показатель топливной экономичности и токсичности отработавших газов (например, содержания СО), а также многие другие.
2.2 Электронные системы впрыскивания бензина
Применение систем впрыскивания топлива взамен традиционных карбюраторов обеспечивает повышение топливной экономичности и снижение токсичности отработавших газов. Они позволяют в большей степени по сравнению с карбюраторами с электронным управлением оптимизировать процесс смесеобразования. Однако следует отметить, что системы впрыскивания топлива сложнее систем топливоподачи с использованием карбюраторов из-за большего числа подвижных прецизионных механических элементов и электронных устройств и требуют более квалифицированного обслуживания в эксплуатации.
По мере развития систем впрыскивания топлива на автомобили устанавливались механические, электронные и цифровые системы. К настоящему времени структурные схемы систем впрыскивания топлива в основном стабилизировались При распределенном впрыскивании топливо подается в зону впускных клапанов каждого цилиндра группами форсунок без согласования момента впрыскивания с процессами впуска в каждый цилиндр (несогласованное впрыскивание) или каждой форсункой в определенный момент времени, согласованный с открытием соответствующих впускных клапанов цилиндров (согласованное впрыскивание). Системы распределенного впрыскивания топлива позволяют повысить приемистость автомобиля, надежность пуска, ускорить прогрев и увеличить мощность двигателя.
При распределенном впрыскивании топлива появляется возможность применения газодинамического наддува, расширяются возможности в создании различных конструкций впускного трубопровода. Однако у таких систем по сравнению с центральным впрыскиванием больше погрешность дозирования топлива из-за малых цикловых подач.
Идентичность составов горючей смеси по цилиндрам в большей степени зависит от неравномерности дозирования топлива форсунками, чем от конструкции впускной системы. При центральном впрыскивании топливо подается одной форсункой, устанавливаемой на участке до разветвления впускного трубопровода. Существенных изменений в конструкции двигателя нет. Система центрального впрыскивания практически взаимозаменяема с карбюратором и может применяться на уже эксплуатируемых двигателях. При центральном впрыскивании обеспечивается большая точность и стабильность дозирования топлива.
Особенно эффективна в отношении повышения топливной экономичности система распределенного впрыскивания топлива в сочетании с цифровой системой зажигания.
В мировой практике разработкой электронных систем впрыска топлива занимаются многие фирмы, однако наиболее известны в Европе: BOSCH, Siemens, поэтому чаще всего используют их обозначение систем. Общепринятым международным обозначением электронных систем впрыска является Jetronic. В настоящее время в массовом производстве преобладает система под названием LH-Jetronic, которая является системой распределенного впрыска топлива во впускной трубопровод. Применяется как синхронный и асинхронный впрыск топлива. Главной чертой этой системы является термоанемометрический расходомер воздуха, взамен расходомера на основе потенциометра с заслонкой.
2.3 Микропроцессорные системы управления бензиновым двигателем
Сейчас практически отказались производители от отдельных электронных систем впрыска и производят электронные системы управления двигателем (МСУД), объединяющие управление впрыском топлива и зажиганием бензинового двигателя. Такие системы обозначаются Motronic. Производятся на современном этапе три типа систем:
— M-Motronic — микропроцессорная система управления зажиганием и распределенным впрыском топлива;
— ME-Motronic — микропроцессорная система управления зажиганием и распределенным, последовательным впрыском топлива, с X- регулированием и электронным дросселем (система ETC);
— MED-Motronic- микропроцессорная система управления зажиганием и непосредственным впрыском топлива в цилиндры (Direct injection, DI).
Рассмотрим особенности систем ME-Motronic и MED-Motronic.
Кроме основных своих функций система ME-Motronic выполняет и целый ряд дополнительных функций с разомкнутой и замкнутой системами управления. В качестве примера можно назвать:
— регулирование частоты вращения коленчатого вала на холостом ходу; регулирование коэффициента избытка воздуха (замкнутая система управления);
— улавливание топливных паров; рециркуляция отработавших газов для снижения содержания оксидов азота;
— контроль за работой вспомогательной воздушной системы для снижения содержания углеводородов в отработавших газах;
— автоматическое регулирование скорости движения (круиз-контроль).
При оснащении бензинового двигателя с искровым зажиганием и непосредственным впрыском топлива системой MED-Motronic расход топлива может быть снижен не менее чем на 20 % по сравнению с двигателем, имеющим впрыск топлива во впускной трубопровод.
При этом может быть достигнут длительный эффект снижения выбросов диоксида углерода (СО2) во время движения автомобиля.
При непосредственном впрыске топлива должна осуществляться возможность скоординированного выбора между вариантами применения неоднородной смеси (послойного заряда) при неполной нагрузке и однородной (гомогенной) смеси при полной нагрузке и наоборот.
Основными требованиями при использовании системы MED-Motronic являются:
— точное дозирование потребного количества впрыскиваемого топлива;
— создание необходимого давления впрыска;
— управление моментом впрыска;
— впрыскивание топлива непосредственно в камеру сгорания.
Так же должны быть согласованы требования к величине крутящего момента двигателя, с тем, чтобы затем имелась возможность проведения необходимых регулировочных операций на данном двигателе.
Принцип работы электронной системы управления двигателем
Развитие электронных систем управления ДВС стало возможным благодаря активному внедрению в конструкцию силовых агрегатов электронных компонентов. Еще одним фактором развития электронного управления стали экологические нормы и стандарты, полного соответствия которым можно добиться только при условии высокоточной работы управляющих систем.
На раннем этапе система управления двигателем представляла собой решение, в котором конструктивно были объединены система зажигания и система впрыска топлива. Сегодня ЭБУ двигателем контролирует большое количество систем и механизмов ДВС, среди которых:
- система впуска;
- система топливного впрыска;
- система зажигания;
- система охлаждения;
- система EGR;
- система выпуска;
- тормозная система и т.д.
Система управления двигателем работает по следующему принципу. В различных механизмах ДВС установлены входные датчики. Среди основных выделяют:
- датчик положения дроссельной заслонки (ДПДЗ);
- датчик расхода воздуха (сегодня используется массовый воздухорасходомер ДМРВ);
- датчик давления топлива;
- датчик положения распредвала (датчик Холла, ДПРВ);
- датчик коленвала;
- датчик детонации;
- кислородные датчики;
- датчики температуры ОЖ, моторного масла, воздуха и т.д.
Указанные датчики осуществляют замер параметров работы мотора, после чего происходит преобразование в электрический сигнал. На современных автомобилях сигнал может быть как аналоговым, так и цифровым. Данные от датчиков являются основой, которая позволяет ЭБУ контролировать работу двигателя на разных режимах. Показания отдельно взятых датчиков могут служить для управления как одной, так и одновременно несколькими системами силового агрегата.
Источник статьи: http://avtic.1c-umi.ru/lekciya_7_-_mikroprocessornye_sistemy_upravleniya_avtomobilya/