- Алгоритм Беллмана-Форда
- Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- Алгоритм Форда-Беллмана
- Содержание
- Введение [ править ]
- Псевдокод [ править ]
- Корректность [ править ]
- Реализация алгоритма и ее корректность [ править ]
- Сложность [ править ]
- Нахождение отрицательного цикла [ править ]
Алгоритм Беллмана-Форда
Алгоритм Беллмана-Форда | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(|V||E|)[/math] |
Объём входных данных | [math]O(|V| + |E|)[/math] |
Объём выходных данных | [math]O(|V|^2)[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]N/A, max O(|V|) [/math] |
Ширина ярусно-параллельной формы | [math]O(|E|)[/math] |
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Беллмана-Форда [1] [2] [3] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность [math]O(|V||E|)[/math] против [math]O(|E| + |V|\ln(|V|))[/math] у алгоритма Дейкстры), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами.
1.2 Математическое описание алгоритма
Пусть задан граф [math]G = (V, E)[/math] с весами рёбер [math]f(e)[/math] и выделенной вершиной-источником [math]u[/math] . Обозначим через [math]d(v)[/math] кратчайшее расстояние от источника [math]u[/math] до вершины [math]v[/math] .
Алгоритм Беллмана-Форда ищет функцию [math]d(v)[/math] как единственное решение уравнения
с начальным условием [math]d(u) = 0[/math] .
1.3 Вычислительное ядро алгоритма
Основной операцией алгоритма является релаксация ребра: если [math]e = (w, v) \in E[/math] и [math]d(v) \gt d(w) + f(e)[/math] , то производится присваивание [math]d(v) \leftarrow d(w) + f(e)[/math] .
1.4 Макроструктура алгоритма
Алгоритм последовательно уточняет значения функции [math]d(v)[/math] .
- В самом начале производится присваивание [math]d(u) = 0[/math] , [math]d(v) = \infty[/math] , [math]\forall v \ne u[/math] .
- Далее происходит [math]|V|-1[/math] итерация, в ходе каждой из которых производится релаксация всех рёбер графа.
Структуру можно описать следующим образом:
1. Инициализация: всем вершинам присваивается предполагаемое расстояние [math]t(v)=\infty[/math] , кроме вершины-источника, для которой [math]t(u)=0[/math] .
2. Релаксация множества рёбер [math]E[/math]
а) Для каждого ребра [math]e=(v,z) \in E[/math] вычисляется новое предполагаемое расстояние [math]t^’ (z)=t(v)+ w(e)[/math] .
б) Если [math]t^’ (z)\lt t(z)[/math] , то происходит присваивание [math]t(z) := t’ (z)[/math] (релаксация ребра [math]e[/math] ).
3. Алгоритм производит релаксацию всех рёбер графа до тех пор, пока на очередной итерации происходит релаксация хотя бы одного ребра.
Если на [math]|V|[/math] -й итерации всё ещё производилась релаксацию рёбер, то в графе присутствует цикл отрицательной длины. Ребро [math]e=(v,z)[/math] , лежащее на таком цикле, может быть найдено проверкой следующего условия (проверяется для всех рёбер за линейное время): [math]t(v)+w(e)\lt d(z)[/math]
1.5 Схема реализации последовательного алгоритма
Последовательный алгоритм реализуется следующим псевдокодом:
1.6 Последовательная сложность алгоритма
Алгоритм выполняет [math]|V|-1[/math] итерацию, на каждой из которых происходит релаксация [math]|E|[/math] рёбер. Таким образом, общий объём работы составляет [math]O(|V||E|)[/math] операций.
Константа в оценке сложности может быть уменьшена за счёт использования следующих двух стандартных приёмов.
- Если на очередной итерации не произошло ни одной успешной релаксации, то алгоритм завершает работу.
- На очередной итерации рассматриваются не все рёбра, а только выходящие из вершин, для которых на прошлой итерации была выполнена успешная релаксация (на первой итерации – только рёбра, выходящие из источника).
1.7 Информационный граф
На рисунке 1 представлен информационный граф алгоритма, демонстрирующий описанные уровни параллелизма.
На приведенном далее информационном графе нижний уровень параллелизма обозначен в горизонтальных плоскостях. Множество всех плоскостей представляет собой верхний уровень параллелизма (операции в каждой плоскости могут выполняться параллельно).
Нижний уровень параллелизма на графе алгоритма расположен на уровнях [2] и [3], соответствующим операциям инициализации массива дистанций [2] и обновления массива c использованием данных массива ребер [3]. Операция [4] — проверка того, были ли изменения на последней итерации и выход из цикла, если таковых не было.
Верхний уровень параллелизма, как уже говорилось, заключается в параллельном подсчете дистанций для различных вершин-источников, и на рисунке отмечен разными плоскостями.
1.8 Ресурс параллелизма алгоритма
Алгоритм обладает значительным ресурсом параллелизма. Во-первых, поиск кратчайших путей от различных вершин может производиться независимо для каждой из вершин (параллельные вертикальные плоскости на рисунке 1). Во-вторых, поиск кратчайших путей от фиксированной вершины [math]u[/math] также может выполняться параллельно: инициализация начальных путей [2] требует [math]|V|[/math] параллельных операции, релаксация каждого ребра требует [math]O(|E|)[/math] параллельных операции.
Таким образом, при наличии [math]O(|E|)[/math] процессоров алгоритм завершит работу максимум за [math]|V|[/math] шагов. В реальности, шагов обычно требуется меньше, а именно [math]O(r)[/math] -(максимальная длина среди всех кратчайших путей от выбранной вершины-источника [math]u[/math] ).
Таким образом, ширина ярусно-параллельной формы алгоритма равна [math]O(|E|)[/math] , высота ЯПФ — [math]O(r) | r \lt |V|[/math] .
Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Беллмана-Форда.
1.9 Входные и выходные данные алгоритма
Входные данные: взвешенный граф [math](V, E, W)[/math] ( [math]|V|[/math] вершин [math]v_i[/math] и [math]|E|[/math] рёбер [math]e_j = (v^<(1)>_
Объём входных данных: [math]O(|V| + |E|)[/math] .
Выходные данные (возможные варианты):
- для каждой вершины [math]v[/math] исходного графа – последнее ребро [math]e^*_v = (w, v)[/math] , лежащее на кратчайшем пути от вершины [math]u[/math] к [math]v[/math] , или соответствующая вершина [math]w[/math] ;
- для каждой вершины [math]v[/math] исходного графа – суммарный вес [math]f^*(v)[/math] кратчайшего пути от от вершины [math]u[/math] к [math]v[/math] .
Объём выходных данных: [math]O(|V|)[/math] .
1.10 Свойства алгоритма
Алгоритм может распознавать наличие отрицательных циклов в графе. Ребро [math]e = (v, w)[/math] лежит на таком цикле, если вычисленные алгоритмом кратчайшие расстояния [math]d(v)[/math] удовлетворяют условию
[math] d(v) + f(e) \lt d(w), [/math]
где [math]f(e)[/math] – вес ребра [math]e[/math] . Условие может быть проверено для всех рёбер графа за время [math]O(|E|)[/math] .
Источник статьи: http://algowiki-project.org/ru/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%91%D0%B5%D0%BB%D0%BB%D0%BC%D0%B0%D0%BD%D0%B0-%D0%A4%D0%BE%D1%80%D0%B4%D0%B0
Алгоритм Форда-Беллмана
Задача: |
Для заданного взвешенного графа [math]G = (V, E)[/math] найти кратчайшие пути из заданной вершины [math] s [/math] до всех остальных вершин. В случае, когда в графе [math]G[/math] содержатся отрицательные циклы, достижимые из [math]s[/math] , сообщить, что кратчайших путей не существует. |
Содержание
Введение [ править ]
Количество путей длины [math]k[/math] рёбер можно найти с помощью метода динамического программирования.
Пусть [math]d[k][u][/math] — количество путей длины [math]k[/math] рёбер, заканчивающихся в вершине [math]u[/math] . Тогда [math] d[k][u] = \sum\limits_
Аналогично посчитаем пути кратчайшей длины. Пусть [math]s[/math] — стартовая вершина. Тогда [math] d[k][u] = \min\limits_
Псевдокод [ править ]
Используя приведенные формулы, алгоритм можно реализовать методом динамического программирования.
Также релаксацию можно свести к одномерному случаю, если не хранить длину пути в рёбрах. Одномерный массив будем обозначать [math]d'[/math] , тогда [math]d'[u] = \min(d'[u], \; d'[v] + \omega(vu))[/math]
Корректность [ править ]
Воспользуемся индукцией по [math]k[/math] :
При [math]k = 0[/math] выполнено: [math]\rho(s, u) \leqslant +\infty \leqslant +\infty [/math]
Сначала докажем, что [math] \rho(s, u) \leqslant d'[u][/math] . Пусть после [math]k — 1 [/math] итерации выполняется [math]\rho(s, u) \leqslant d'[u] \leqslant \min\limits_ d[i][u][/math] для всех [math]u[/math] . Тогда после [math]k[/math] итераций [math] \rho(s, v) = \min\limits_ (\rho(s, u) + \omega(uv)) \leqslant \min\limits_ (d'[u] + \omega(uv)) = d'[v][/math] .
Переходим ко второму неравенству. Теперь возможно два случая:
- [math]\min\limits_ d[i][u] = d[k+1][u][/math]
- [math]\min\limits_ d[i][u] = d[j][u] =\min\limits_ \; d[i][u][/math]
Рассмотрим 1 случай: [math]\min\limits_ d[i][u] = d[k+1][u][/math]
[math]d'[u] \leqslant d'[v] + \omega(vu) \leqslant d[k][v] + \omega(vu) = d[k+1][u][/math] 2 случай расписывается аналогично. Таким образом переход выполнен и [math]\rho(s, u) \leqslant d'[u] \leqslant \min\limits_ d[i][u][/math] выполняется.
Реализация алгоритма и ее корректность [ править ]
В этом алгоритме используется релаксация, в результате которой [math]d[v][/math] уменьшается до тех пор, пока не станет равным [math]\delta(s, v)[/math] . [math]d[v][/math] — оценка веса кратчайшего пути из вершины [math]s[/math] в каждую вершину [math]v \in V[/math] .
[math]\delta(s, v)[/math] — фактический вес кратчайшего пути из [math]s[/math] в вершину [math]v[/math] .
Рассмотрим произвольную вершину [math]v[/math] , достижимую из [math]s[/math] . Пусть [math]p = \langle v_0. v_
Докажем следующее утверждение:
После [math]n : (n \leqslant k)[/math] итераций первого цикла алгоритма, [math]d[v_n] = \delta(s, v_n) [/math]
Воспользуемся индукцией по [math]n[/math] :
Перед первой итерацией утверждение очевидно выполнено: [math]d[v_0] = d[s] = \delta(s, s) = 0[/math]
Пусть после [math]n : (n \lt k)[/math] итераций, верно что [math]d[v_n] = \delta(s, v_n)[/math] . Так как [math](v_n, v_
Теорема: |
Доказательство: |
[math]\triangleright[/math] |
Пусть граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math] . Тогда если вершина [math] v [/math] достижима из [math] s [/math] , то по лемме [math] d[v] = \delta (s, v)[/math] . Если вершина [math] v [/math] не достижима из [math] s [/math] , то [math] d[v] = \delta (s, v) = \mathcal <1>[/math] из несуществования пути. Теперь докажем, что алгоритм вернет значение [math] true [/math] . После выполнения алгоритма верно, что для всех [math] (u, v) \in E, \ d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)[/math] , значит ни одна из проверок не вернет значения [math] false [/math] . Пусть граф [math] G [/math] содержит отрицательный цикл [math] c = Предположим, что алгоритм возвращает [math] true [/math] , тогда для [math] i = 1. k [/math] выполняется [math] d[v_] \leqslant d[v_ Просуммируем эти неравенства по всему циклу: [math]\sum\limits_^ Из того, что [math] v_0 = v_ Получили, что [math] \sum \limits_^ |
[math]\triangleleft[/math] |
Сложность [ править ]
Инициализация занимает [math] \Theta (V) [/math] времени, каждый из [math] |V| — 1 [/math] проходов требует [math] \Theta (E) [/math] времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает [math]O(E)[/math] времени. Значит алгоритм Беллмана-Форда работает за [math]O(V E)[/math] времени.
Нахождение отрицательного цикла [ править ]
Приведенная выше реализация позволяет определить наличие в графе цикла отрицательного веса. Чтобы найти сам цикл, достаточно хранить вершины, из которых производится релаксация.
Если после [math]|V| — 1[/math] итерации найдется вершина [math] v [/math] , расстояние до которой можно уменьшить, то эта вершина либо лежит на каком-нибудь цикле отрицательного веса, либо достижима из него. Чтобы найти вершину, которая лежит на цикле, можно [math]|V| — 1[/math] раз пройти назад по предкам из вершины [math] v [/math] . Так как наибольшая длина пути в графе из [math]|V|[/math] вершин равна [math]|V| — 1[/math] , то полученная вершина [math] u [/math] будет гарантированно лежать на отрицательном цикле.
Зная, что вершина [math] u [/math] лежит на цикле отрицательного веса, можно восстанавливать путь по сохраненным вершинам до тех пор, пока не встретится та же вершина [math] u [/math] . Это обязательно произойдет, так как в цикле отрицательного веса релаксации происходят по кругу.
Источник статьи: http://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A4%D0%BE%D1%80%D0%B4%D0%B0-%D0%91%D0%B5%D0%BB%D0%BB%D0%BC%D0%B0%D0%BD%D0%B0