Инвертор для автомобильного усилителя схема

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Преобразователь напряжения для питания автомобильного усилителя

Эта статья содержит описание схемы простейшего импульсного повышающего преобразователя для авто усилителей (например на TDA7294 или любой другой микросхеме с двухполярным питанием), без лишних расчетов или теорий только необходимый минимум. Это действительно самый простой способ на сегодня запустить усилитель достаточно высокой мощности в автомобиле, с бортовым питанием 12 В. Представленный инвертор может выдавать постоянную мощность около 100 Вт, а при небольшой доработке схемы ещё больше.

Схема и описание преобразователя

Схема была разделена на несколько частей для облегчения описания и понимания сути работы деталей.

Зеленая часть представляет собой генератор, использующий популярную микросхему TL494. Чтобы сделать структуру максимально простой, использовалась только часть м/с, а именно только генератор. Частота его работы определяется элементами R4 и C4. Для текущих значений (10 кОм и 1 нФ) она составляет около 30 кГц. Увеличив частоту также можно повысить эффективность, но для этого необходимо намотать трансформатор более тонкими проводами (из-за скин-эффекта).

Желтая часть — усилители тока. Они используются только для облегчения повторной загрузки затворных мощностей мосфетов, которые разгружают внутренние выходные транзисторы в TL494. Фактически, схема в текущей конфигурации будет работать и без них, потому что внутренние транзисторы TL494 в принципе могут управлять одним затвором без особых проблем, но в случае падения напряжения в источнике питания инвертор может работать нестабильно. Вот почему рекомендуется установить их. В этой роли практически любой транзистор может быть использован для создания комплементарной пары. Схема также хорошо работает например с парой BC547 / BC557 и т.п.

Читайте также:  Схема ходовой части тойота корона

Оранжевая часть — это ключевые выходные элементы. Мосфет включается при получении импульса от предыдущего каскада. Преобразователь включает мосфеты попеременно с так называемым мертвым временем (когда оба выключены). Особое внимание следует уделить C8 (10 нФ) и R12 (4,7 Ом), потому что от них зависит безопасность транзисторов. Они используются для подавления перенапряжений, возникающих в индуктивности во время переходных процессов. Используйте конденсатор 10 нФ на минимальное напряжение 250 В и резистор 3,3 … 4,7 Ома с минимальной мощностью 0,5 Вт.

Для преобразователя могут быть выбраны разные типы мосфетов, в значительной степени от них зависит, какой мощности и эффективности удастся достичь. Важно выбирать с низким сопротивлением и большим рабочим током. Тут использовались IRF3205, но одинаково хорошо заработают IRFZ44n, BUZ11 или IRFP064n для немного большей мощности.

Красная часть — трансформатор с выпрямителем. Про трансформатор и его перемотатку будет чуть ниже. Сейчас остановимся на схеме выпрямления и фильтрации. Это классический симметричный источник питания, в котором используются ультрабыстрые выпрямительные диоды или диоды Шоттки. В данном случае использовался диод MBR10100CT. Ещё нужен выходной дроссель и конденсаторы фильтра. Для одной микросхемы TDA7294 просто используйте 2200 мкФ + 100 нФ на каждое плечо. Ставьте нормальный электролитический конденсатор, нет необходимости использовать конденсаторы с низким ЭПР.

Предохранители инвертора

Схему контроля выходного тока будет лучше заменить на так называемый электронный предохранитель, который в случае короткого замыкания будет отключать преобразователи (потребуется перезапуск). Схема управления током в инверторе с питанием, сделанным для конкретной системы (в данном случае стерео TDA7294 для громкоговорителя 8 Ом), может отключить преобразователь только во время басов, когда усилитель потребляет больше энергии.

Модуль управления имеет предохранитель в виде резистора R11. Используем стандартный 4.7R 0.25W резистор — в случае короткого замыкания в TL494 или усилителях тока, резистор немедленно перегорает. Силовая часть защищена предохранителем на 10 А. В вышеуказанной схеме короткое замыкание на выходе вызывает его немедленное сгорание.

Сборка преобразователя питания

Можно вытравить полноценную печатную плату, а можно использовать универсальную макетку. Важно, чтобы пути тока были максимально короткими и толстыми.

Сначала собираем зеленую, желтую и оранжевую части. При этом схема питается через маленькую лампочку (например, 10 Вт) или установите ограничение тока 200 мА на блоке питания. Подключите один щуп осциллографа к источнику питания плюс, а другой — к усилителям УТ. Должны увидеть прямоугольную осциллограмму с амплитудой около напряжения питания. Форма волны должна быть очень похожей на фото.

Если сигнал не отображается, проверьте правильность сборки и работоспособность зеленой и желтой секций ИБП.

Затем подключаем осциллограф параллельно мосфетам и наблюдаем форму сигнала там. Это должен быть прямоугольник с амплитудой, аналогичной напряжению питания. Если он не просматривается, это означает, что установили поврежденный mosfet (или неправильно впаяли его).

Если все в порядке, можем начать наматывать трансформатор.

Намотка трансформатора

Трансформатор — самый важный элемент и самый сложный. Во-первых, нужно достать ферритовый сердечник. Можно добыть его из блока питания ATX или другого импульсного преобразователя. Крайне важно, чтобы это был сердечник без зазора, иначе инерционный ток преобразователя будет выше, а КПД будет значительно ниже. В худшем случае может вообще не работать. Чтобы разобрать такой трансформатор, нагрейте его в кипящей воде, потому что тогда смола размягчится. Затем, используя тряпку, разломите горячий трансформатор. Важно не повредить сердечник. Затем снимаем заводские обмотки и наматываем новые в соответствии с инструкциями далее.

Начнем с первичной обмотки. В ней две обмотки должны быть намотаны по 3 витка одновременно, где начало второй является концом первой. Обе обмотки намотаны в одном и том же направлении. Из-за того что инвертор работает на высокой частоте, возникает скин-эффект. Поэтому не стоит намотать трансформатор одним толстым проводом, как в случае классических трансформаторов. Для данного инвертора намотаем 4 провода по 0,3 мм. Обмотка должна выглядеть примерно так:

Теперь изолируйте первичку от вторички. Например слоями скотча. Пришло время намотать вторичную обмотку. Намотайте две обмотки по 7 витков. Трансформатор готов.

Вместо основного предохранителя вставляем лампу значительной мощности (предпочтительно 50 Вт, чтобы при малом токе она не вызывала значительного падения напряжения). Измеряем ток, потребляемый преобразователем, должно составлять 100-250 мА. Форма сигнала на осциллографе должна быть прямоугольной с требуемой амплитудой.

Инвертор практически закончен. Осталось смонтировать схему выпрямителя со сверхбыстрыми диодами или диодами Шоттки. Далее устанавливаем дроссель и фильтрующие конденсаторы.

Выходной дроссель в этом инверторе будет необходим. С натяжкой он может работать и без него, но его эффективность станет меньше и может быть слышен писк под нагрузкой. Дроссель наматывается на порошковое кольцо. Вы можете также выпаять его от источника питания ATX. Обмотка двойная по 17 витков (значение выбрано методом проб и ошибок).

Выходное напряжение инвертора должно быть примерно +/- 36 В. Это оптимальное значение для микросхем TDA7294.

Инвертор должен быть нагружен для испытаний электронной нагрузкой или мощным резистором с сопротивлением 50 Ом. Резистор будет выдавать около 100 Вт мощности в виде тепла. Выходное напряжение преобразователя под этой нагрузкой не должно падать ниже 32 В. Наиболее теплым элементом должны быть выпрямительные диоды. Трансформатор должен слегка нагреваться, как и мосфеты. Тест 100 Вт должен занять 10 минут.

Нужен ли стабилизатор напряжения

Стабилизация выходного напряжения на БП усилителя звука — плохая идея. Усилитель имеет очень нелинейное энергопотребление, кроме того, когда проходит бас, он может потреблять много энергии (в импульсе). Обратная связь для управления выходным напряжением может мешать реакции на повышенное энергопотребление.

Для тестирования блок питался от адаптера 12 В 60 A. Кроме того, предохранители желательно установить на линиях +36 В и -36 В. Плата имеет размеры, подходящие для установки в корпуса автомобильного радио, и все элементы можно легко охладить одним вентилятором при необходимости.

Источник статьи: http://2shemi.ru/preobrazovatel-napryazheniya-dlya-pitaniya-avtomobilnogo-usilitelya/

Инвертор для автомобильного усилителя схема

Почти все автомобильные преобразователи для усилителей мощности делаются по одинаковым схемам. Эти схемы известны вот уже пол года, но со временем изменению почти не подвергались. Современная элементарная база и высокоточные компоненты обеспечивают бесперебойную работу импульсных схем преобразователей напряжения.

Этот вариант построен на ШИМ контроллере ТЛ494. Не смотря на то, что микросхема довольно старая, она не уступает место современным, более хорошим аналогам.

Рабочая частота генератора в районе 50 кГц, сигналы с микросхемы идут на драйвер, который по идее и раскачивает силовые ключи, не давая перегружаться микросхеме. Драйвер также разряжает емкость полевого ключа, это обязательная мера для того, чтобы первый транзистор полностью закрылся, когда открывается второй ключ.

От количества полевых ключей и габаритных размеров трансформатора (также и от диаметра провода в обмотках) зависит общая мощность инвертора. Нужно учитывать то, что инвертор двухтактный и имеет КПД 70-75%, вся остальная мощность рассеивается в виде тепла.

Для получения 1000 ватт, нужно использовать 8 полевых ключей серии IRF3205 (для каждой пары — 300 ватт). Трансформатор намотан на кольце 2000НМ (размеры, к сожалению предоставить не могу). Первичная обмотка состоит из 5х5 витков растянутых по всему кольцу. Для намотки каждого плеча первичной обмотки использованы 20 жил провода 0,6мм. Вторичная обмотка мотается исходя от требуемого напряжения и тока для запитки усилителя мощности. При намотке нужно учесть, что один виток вторичной обмотки дает 2,5-3 Вольта.

Все полевые ключи готового инвертора устанавливаются на общий теплоотвод, через слюдяные прокладки и шайбы — это обязательная мера.

Если преобразователь включен, но на выходные не подключена нагрузка, то транзисторы не должны перегреваться, если чувствуется хоть незначительный перегрев, значит имеется неисправный компонент или косяк в схеме.

Источник статьи: http://vip-cxema.org/index.php/home/bloki-pitaniya/130-avtomobilnyj-invertor-1000-vatt-dlya-avto-usilitelya

Автомобильный преобразователь на TL494 для усилителя НЧ

Послушать музыку громко — удовольствие, а уж послушать громко в машине — вдвойне удовольствие (но только если это не мешает безопасности дорожного движения и другим автомобилистам!). Штатная бортовая сеть автомобиля имеет напряжение около 12-14В, этого достаточно для подключения скромных по мощности усилителей, но слишком мало для мощных. Кроме того, для их подключения часто требуется двухполярное напряжение, например, популярные TDA7293, TDA7294 требуют двухполярного 25-30В, то есть относительно земли одно плечо питания в плюс, и одно в минус, общий размах 50-60В. Для того, чтобы питать такие микросхемы от бортовой сети автомобиля нужны специальные преобразователи, которые из 12В могут сделать требующиеся двухполярные 25-30В. Одна из таких схем представлена ниже. Хочу обратить внимание, что она является полностью универсальной, может быть пересчитана на другие напряжения и использоваться не только для питания усилителей. Так как мощные усилители не только питаются довольно высоким напряжением, но и потребляют от источника приличный ток, поэтому преобразователь должен выдавать мощность как минимум 100Вт. Этого с запасом достаточно для питания одного канала усилителя на TDA7294.

Её основа — крайне распространённый ШИМ-контроллер TL494, найти его можно во многих компьютерных блоках питания и других импульсных источниках. Схема имеет вход под 12В, куда будет подавать напряжение, и выход, который имеет землю (GND) и два плеча. Необходимо учитывать, что из-за работы генератора и системы зажигания бортовая сеть автомобиля полна помех и пульсаций, а потому на входе схемы нужно предусмотреть дроссель, сглаживающий пульсации. На схеме цепочка С5, L1, С6 образуют CLC-фильтр, который эффективно подавляет такие пульсации, поэтому не стоит экономить на ёмкостях С5, С6, минимальное значение 2200 мкФ каждого, напряжение 16 вольт, подойдут и на 25В с запасом. Колечко L1 можно взять из того же компьютерного блока питания, а можно самостоятельно намотать 10-15 витков провода диаметром 0,85 мм на жёлтом ферритовом колечке.

Также во входной цепи обязательно должен стоять предохранитель, ведь автомобильный аккумулятор в случае короткого замыкания может выдавать огромные токи, которые в считанные минуты расплавят провода. На схеме он обозначен как F1, оптимально взять на 15А. Принцип работы заключается в следующем — на вход поступает постоянное напряжение, TL494 формирует ШИМ-сигнал, который буквально «нарезает» входное постоянное напряжение, делая из него импульсы (с помощью мощных полевых транзисторов VT3, VT4). Затем эти высокочастотные импульсы поступают на трансформатор Tr1, его нам ещё предстоит намотать, это самая ответственная часть схемы. От правильного выбора количества витков, диаметра провода и марки феррита будет зависеть напряжение на выходе и максимальная мощность, но об этом позже. Напряжение на вторичной обмотке больше по амплитуде, чем подаваемое на первичную, но оно всё ещё представляет собой высокочастотные импульсы. Для того, чтобы его выпрямить, служат диоды VD3-VD6. Так как они выпрямляют высокочастотное напряжение, а не привычные 50 герц, как в розетке, то сюда подойдут далеко не всякие диоды. Нужны мощные импульсные диоды, в идеальном случае рассчитанные на ток в 10 ампер, например, хорошо подойдут отечественные Шоттки КД213, с натяжкой FR607, идеальным вариантом будут сдвоенные сборки STPS20H100CT, они почти не греются при работе даже с мощной нагрузкой.

Самые сложный этап сборки преобразователя — намотка самодельного импульсного трансформатора на ферритовом кольце. К счастью, для расчёта таких трансформаторов созданы специальные программы, например, Lite-CalcIT, скачать её можно бесплатно в интернете. Ниже представлен скриншот программы с выбранными параметрами для нашего случая.

Программа может исходя из частоты (её нужно взять 50-70 кГц), используемой марки феррита, его размеров, а также входного напряжения рассчитать количество витков в первичной и вторичной обмотках, и максимальную мощность, которую будет развивать преобразователь. Обратите внимание, что при задании входного напряжения программа просит три значения (мин., номинальное, макс.), в случае с использованием преобразователя в автомобильной бортовой сети, номинальным будет являться напряжение 13-14В. Очень важно точно задать это значение, ведь от напряжение на входе будет также зависеть и напряжение на выходе. После того, как программа рассчитает все необходимые параметры, можно приступать к изготовлению самого трансформатора. Он будет намотан на ферритовом кольце размерами 40мм-25мм-11мм, марка феррита 2000МН. Если посмотреть на схему, то можно увидеть, что и первичная, и вторичная обмотки содержат отвод от середины, то есть состоят из двух половинок. Эти половинки должны быть одинаковыми, поэтому важно соблюсти в точности описанную ниже технологию изготовления трансформатора.

Сперва изолируем ферритовый сердечник, для этого можно использовать и обычную изоленту, отрезая небольшие куски и продевая их через центр кольца.

После этого можно приступать к намотке первичной обмотки трансформатора. Если марка вашего феррита отличается не сильно, скорее всего программа выдаст близкое количество витков, 5 или 6. Автор наматывает 5 витков, при этом нужно учитывать, что 5 витков — это только половина первичной обмотки, вторая половина должна содержать такие же 5 витков (обозначение 5+5 в программе). Берём медный провод, диаметр которого рассчитала программа (либо можно просто взять 0,85 мм, как самый оптимальный по гибкости), и начинаем равномерно наматывать его на колечко. Намотали один раз, и затем намотали ещё 5 раз, виток к витку. Получилась обмотка в 5 витков жилой из 5-ти проводов, это половина первичной обмотки. Мотать всегда необходимо строго в одну сторону, и первичную, и вторичную обмотку.

Теперь наматываем ещё 5 витков в 5 жил, оголяя и скручивая выводы первой и второй части первичной обмотки отдельно. Так, чтобы в итоге получилось 4 отвода, каждый в 5 жил. Важно наматывать аккуратно, виток к витку, равномерно распределяя витки по всему кольцу.

Доводим первичную обмотку до ума, аккуратно укладываем выводы на одну сторону, зачищаем, залуживаем, укладываем в термоусадку. После этого изолируем сами витки на кольце, в дальнейшем сверху будет наматывать вторичную обмотку.

Вторичная обмотка мотается полностью аналогичным образом, но она уже содержит две части, каждая по 16 витков (либо другое значение, в зависимости от расчётов программы в вашем конкретном случае), мотать нужно уже не в 5 жил, как в первичной, а всего в 2, что упрощает задачу. Вторичная обмотка также будет содержать четыре отвода, каждый из которых в две жилы.


На фото выше вид готового импульсного трансформатора, если всё делать качественно, он будет таким же красивым. Всего у него 8 отводов, по 4 с каждой обмотки. При намотке нужно запоминать, где начало, а где концы обмотки — потому что при установке трансформатора на плату нужно соединить начало одной части первичной (во вторичной тоже, аналогично), с концов другой. Очень важно не перепутать и не подключить начало с началом, а конец с концом. Получившийся трансформатор имеет не маленькие габариты, но на плате под него предусмотрено место.

Сам преобразователь собирается на печатной плате, файл которой прилагается к статье. Сборка самая стандартная — переносим рисунок, травим, сверлим, залуживаем. Следует пролудить силовые дорожки тщательно. После сборки в последнюю очередь на плату устанавливается сделанный ранее трансформатор.

Когда плата собрана, флюс смыт, подаём питание и замеряем напряжение на выходе в обоих плечах. Если всё верно, оно будет соответствовать рассчитанному. При необходимости можно подстроить частоту работы преобразователя с помощью элементов C4, R3, это может понадобится в том случае, если преобразователь греется на холостом ходу, либо не отдаёт в нагрузку всей заявленной мощности. Данная схема не имеет защиты от КЗ по выходу, поэтому нужно быть аккуратным при её использовании. Удачной сборки!

Источник статьи: http://usamodelkina.ru/18173-avtomobilnyj-preobrazovatel-na-tl494-dlja-usilitelja-nch.html

Оцените статью
Все про машины