Как вычислить кпд двигателя автомобиля

Содержание
  1. Как вычислить кпд двигателя автомобиля
  2. Название величины
  3. Обозначение
  4. Единица измерения
  5. Формула
  6. Масса топлива
  7. Удельная теплота сгорания топлива
  8. Полезная работа
  9. Ап = ɳ Q
  10. Затраченная энергия
  11. Q = qm
  12. КПД
  13. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
  14. Краткая теория для решения Задачи на КПД тепловых двигателей.
  15. КПД — что это, по какой формуле считается и как найти КПД тепловой машины или механизма
  16. Что такое КПД в физике и какова его формула
  17. КПД теплового двигателя (машины)
  18. КПД механизма — по какой формуле вычисляют
  19. Как можно увеличить КПД
  20. Тепловой двигатель
  21. Наклонная плоскость
  22. КПД теплового двигателя
  23. Элементы тепловой машины
  24. Какие функции выполняет каждый элемент
  25. Роль холодильника в тепловом двигателе
  26. На какие части делится энергия нагревателя
  27. Формулы коэффициента полезного действия
  28. Какой максимальный КПД может иметь тепловой двигатель
  29. КПД реальных тепловых двигателей

Как вычислить кпд двигателя автомобиля

Формулы, используемые на уроках «Задачи на КПД тепловых двигателей».

Название величины

Обозначение

Единица измерения

Формула

Масса топлива

Удельная теплота сгорания топлива

Полезная работа

Ап = ɳ Q

Затраченная энергия

Q = qm

КПД

Относится ли ружьё к тепловым двигателям? Да, так как при выстреле внутренняя энергия топлива превращается в механическую энергию.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Определите КПД двигателя автомобиля, которому для выполнения работы 110,4 МДж потребовалось 8 кг бензина.

Задача № 2. Определите КПД двигателя автомобиля, которому для выполнения работы 220,8 МДж потребовалось 16 кг бензина.

Задача № 3. Определите КПД двигателя автомобиля, которому для выполнения работы 27,6 МДж потребовалось 2 кг бензина.

Задача № 4. На теплоходе установлен дизельный двигатель мощностью 80 кВт с КПД 30%. На сколько километров пути ему хватит 1 т дизельного топлива при скорости движения 20 км/ч? Удельная теплота сгорания дизельного топлива 43 МДж/кг.

Задача № 5. Патрон травматического пистолета «Оса» 18 x 45 мм, содержит резиновую пулю массой 8,4 г. Определите КПД патрона, если пуля при выстреле приобрела скорость 140 м/с. Масса порохового заряда патрона составляет 0,18 г, удельная теплота сгорания пороха 3,8 • 10 6 Дж/кг.

Задача № 6. Первый гусеничный трактор конструкции А. Ф. Блинова, 1888 г., имел два паровых двигателя. За 1 ч он расходовал 5 кг топлива, у которого удельная теплота сгорания равна 30 • 10 6 Дж/кг. Вычислите КПД трактора, если мощность двигателя его была равна около 1,5 кВт.

Задача № 7. Двигатель внутреннего сгорания совершил полезную работу, равную 2,3 • 10 4 кДж, и при этом израсходовал бензин массой 2 кг. Вычислите КПД этого двигателя.

Задача № 8. За 3 ч пробега автомобиль, КПД которого равен 25%, израсходовал 24 кг бензина. Какую среднюю мощность развивал двигатель автомобиля при этом пробеге?

Задача № 9. Двигатель внутреннего сгорания мощностью 36 кВт за 1 ч работы израсходовал 14 кг бензина. Определите КПД двигателя.

Задача № 10. ОГЭ Идеальная тепловая машина, работающая по циклу Карно, 80 % теплоты, полученной от нагревания, передаёт охладителю. Количество теплоты, получаемое рабочим телом за один цикл от нагревателя, Q1 = 6,3 Дж. Найти КПД цикла ɳ и работу А, совершаемую за один цикл.

Задача № 11. ЕГЭ Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найти КПД цикла ɳ.

Задача № 12. Снегоуборочная машина мощностью 40 кВт за 1 час работы расходует примерно 5 л бензина. Каков КПД снегоуборочной машины? Удельная теплота сгорания бензина 46 МДж/кг, плотность бензина — 710 кг/м 3 .

Краткая теория для решения Задачи на КПД тепловых двигателей.

Это конспект по теме «ЗАДАЧИ на КПД тепловых двигателей». Выберите дальнейшие действия:

Источник статьи: http://uchitel.pro/%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8-%D0%BD%D0%B0-%D0%BA%D0%BF%D0%B4-%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D1%8B%D1%85-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9/

КПД — что это, по какой формуле считается и как найти КПД тепловой машины или механизма

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта аббревиатура вряд ли требует расшифровки: она неизвестна разве что тем, у кого в школе был «неуд» по физике.

Но для забывчивых всё же напомним, что под этим сокращением скрывается коэффициент полезного действия . Что же собой представляет эта величина?

Поговорим о ней простым и понятным языком – это может пригодиться даже в повседневной жизни.

Что такое КПД в физике и какова его формула

Для выполнения какой-либо работы необходимо затратить определённое количество энергии. Чтобы ехал велосипед, вы тратите мышечную энергию крутя педали. Чтобы двигался автомобиль, используется энергия сжигаемого топлива (бензина, солярки или газа).

Для горения лампочки требуется энергия электрического тока. Список можно продолжать до бесконечности. Точку можно поставить на солнечной энергии, благодаря которой существует жизнь на Земле.

Далее возникает логичный вопрос: а насколько эффективно расходуется эта энергия? В идеале хотелось бы, чтобы вся она шла «в дело», то есть использовалась только по прямому назначению. Но, к сожалению, на практике такого не бывает.

Затраченная энергия будет всегда больше, чем полезная работа , так как для достижения основной цели (движение, подъём груза, освещение, отопление и т.д.) часть энергии неизбежно уйдёт на неустранимые потери (преодоление силы трения, нагрев электропроводки, выброс продуктов горения в атмосферу и т.д.). Понятно, что чем меньше такие потери, тем лучше.

Критерием того, насколько эффективно работает система (устройство, агрегат, двигатель, машина и т.д.), служит показатель, получивший название коэффициент полезного действия (КПД) .

Иными словами, КПД показывает, какова доля полезной работы в общих энергозатратах. Математически КПД (чаще всего обозначается символом ŋ) определяется по формуле :

где A — полезная энергия (работа);
Q — энергия, затраченная на совершение полезной работы.

Понятно, что ŋ – величина безразмерная и не может быть больше единицы (да и равной единице она может быть чисто теоретически).

Выражается она в виде десятичной дроби либо в процентах (в последнем случае в формулу вставляется множитель х100).

Так, если КПД равен 0,9 (90%), то это значит, что 10% полезной мощности составили безвозвратные потери.

КПД теплового двигателя (машины)

Под тепловым двигателем понимается машина (агрегат), в которой энергия, высвобождающаяся в процессе расширения рабочего тела, преобразуется в механическую работу.

В качестве рабочего тела обычно выступает газ или газообразные вещества (пары бензина, водяной пар и т.п.).

Тепловые машины работают по замкнутому циклу. Это значит, что процесс преобразования энергии и сопутствующей теплопередачи периодически повторяется, а рабочее тело совершает круговой цикл, возвращаясь в исходное состояние.

К тепловым двигателям относятся :

  1. поршневые (паровые машины, двигатели внутреннего сгорания);
  2. роторные/турбинные (газовые или паровые турбины АЭС и ТЭЦ);
  3. реактивные (авиация);
  4. ракетные (космическая техника).

Используя положения предыдущего параграфа, КПД тепловой машины можно сформулировать как отношение полезной работы, совершённой за один цикл, к энергии (количеству теплоты), поступившей от энергоносителя (нагревателя).

Тогда формулу (1) можно преобразовать следующим образом:

где Q1 — количество теплоты, полученное двигателем от нагревателя за цикл;
Q2 — количество теплоты, отданное двигателем охладителю (холодильнику) за цикл;
Q1 – Q2 – количество теплоты, которое пошло на совершение работы.

Предположим, что Q1 = Q2, то есть на совершение полезной работы ничего не осталось – вся энергия «ушла в трубу». Тогда и КПД будет нулевым. Если же Q2 = 0, то есть вся энергия отдана полезной работе (потери отсутствуют), то КПД будет равен 1.

Но это теория, на практике ни то ни другое нереалистично. В первом случае двигатель просто бесполезен, во втором – идеален, но недосягаем.

Значения КПД для различных типов тепловых двигателей приведены ниже.

Самым большим КПД обладают тепловые двигатели, работающие на основе цикла Карно (процесс назван в честь французского инженера, открывшего это явление в 1824 г.). В термодинамике оно характеризует круговой цикл, включающий в себя две стадии: расширение и сжатие рабочего тела.

Причём на протяжении обеих стадий попеременно проходят два процесса: изотермический (протекающий при постоянной температуре), и адиабатический (протекающий без теплообмена с окружающей средой). Максимальное значение КПД здесь достигается за счёт того, что тела с разной температурой не контактируют, а значит, без осуществления работы теплопередача исключается.

КПД механизма — по какой формуле вычисляют

Человек придумал разнообразные механизмы, с помощью которых можно поднимать тяжёлые грузы на определённую высоту. Так, для подъёма ведра с водой из колодца изобрели ворот, для подъёма автомобиля – домкрат. При помощи лебёдки и наклонной плоскости египтяне построили свои грандиозные пирамиды.

Пользуясь этими приспособлениями, человек редко вспоминает об их КПД. В качестве примера рассмотрим этот показатель для наклонной плоскости .

Принцип расчёта КПД остаётся неизменным: нужно найти отношение полезной работы ко всей затраченной энергии. То есть опять-таки используем общую формулу (1), сделав соответствующие преобразования.

Предположим, тело массой m нужно поднять (точнее затолкать или затянуть) на высоту h. При постоянной скорости подъёма полезная работа будет равна произведению силы тяжести (mg) на высоту (h).

Затраченная работа определяется произволением силы толчка или тяги F на длину наклонной плоскости L. Заметим, что толчковое (тяговое) усилие идёт на преодоление силы трения Fтр.

Таким образом, КПД такого простейшего механизма можно посчитать по формуле:

Несложный анализ показывает, что КПД наклонной плоскости обратно пропорционален силе трения и длине аппарели. Последняя, в свою очередь, зависит от угла наклона: чем он больше, тем короче аппарель.

Как можно увеличить КПД

Современная наука постоянно ищет пути повышения КПД двигателей и отдельных механизмов, внедряя новые технические решения и технологические инновации.

Чем выше будет КПД, тем экономичней будет двигатель, тем больше энергоресурсов удастся сберечь.

Тепловой двигатель

Из формулы (2) следует, что для увеличения КПД есть два пути : а) повышение температуры нагревателя; б) понижение температуры холодильника. Оба пути малоперспективны.

Нагреватель нельзя разогревать до бесконечности, так как любой материал имеет предел жаропрочности. Холодильником почти всегда служит окружающая среда, а внедрение в систему дополнительного теплообменника (например, баллона с жидким азотом) нецелесообразно: это резко увеличит вес, габариты и стоимость двигателя.

Установлено, что на КПД не влияют характеристики рабочего тела. Что же остаётся?

А остаётся немало практически реализуемых способов, таких как уменьшение трения в механических узлах, минимизация теплопотерь путём достижения максимально полного сгорания топлива, создание обтекаемых форм для снижения лобового сопоставления (воздуха или воды) и т.д.

Учитывая, что в механике хорошим показателем на сегодняшний день считается КПД 30-40% , учёным и практикам есть над чем работать.

Наклонная плоскость

Из формулы (3) следует, что для повышения КПД нужно снижать силу трения (прежде всего, путём создания гладких соприкасающихся поверхностей) и увеличивать угол наклона. Но! При крутом уклоне силёнок для поднятия тяжёлого груза может и не хватить.

В заключение отметим, что в электротехнике ситуация с КПД обстоит гораздо лучше (показатель в 95% для электродвигателя – норма). На то есть объективные причины, объяснение которых выходит за рамки рассматриваемой темы.

Источник статьи: http://ktonanovenkogo.ru/voprosy-i-otvety/kpd-chto-ehto-takoe-formula-kak-najti-kpd-teplovogo-dvigatelya-mekhanizma.html

КПД теплового двигателя

В тепловых двигателях используется энергия сгорающего топлива. Однако, не вся энергия сгорающего топлива затрачивается на полезную работу, часть энергии безвозвратно рассеивается в окружающую среду.

Чем меньше эта утерянная часть теплоты, тем выше будет эффективность двигателя и его коэффициент полезного действия. Тем больше полезной работы сможет совершить газ при расширении, толкая поршень двигателя, или раскручивая диск газовой турбины.

Элементы тепловой машины

Конструкции тепловых машин отличаются разнообразием. Однако, из каких бы частей двигатель не состоял, он всегда содержит рабочее тело, холодильник и нагреватель (рис. 1).

Например, в двигателе внутреннего сгорания рабочим телом будут пары топлива и воздух.

В двигателе внутреннего сгорания роль нагревателя совместно выполняют свеча и поршень. Однако, поршень выполняет функции нагревателя только тогда, когда он сжимает газ. А свеча зажигает сжатый газ с помощью искры и вызывает горение топлива.

Чтобы передать остатки тепловой энергии атмосфере, двигатели с воздушным охлаждением имеют специальные ребристые поверхности на наружной части цилиндров.

А двигатели, в которых используется жидкостное (водяное) охлаждение, содержат насос, прокачивающий жидкость в специальных полостях двигателя и радиатор с вентилятором. Жидкость интенсивно охлаждается в радиаторе, а вентилятор обеспечивает обдув, чтобы ускорить охлаждение. Температура охлаждающей жидкости всегда выше температуры окружающего воздуха.

Какие функции выполняет каждый элемент

От нагревателя рабочее тело — газ, или пар, получает запас тепловой энергии (рис. 2). Затем, полученная энергия делится на две, как правило, неравные части. За счет одной части совершается работа.

А оставшаяся часть передается холодильнику (например, атмосфере) и рассеивается окружающей средой.

Роль холодильника в тепловом двигателе

Совершая работу, рабочее тело – расширяющийся газ, охлаждается. Температура \(T_\), до которой газ охладился, называется температурой холодильника.

Так как газ, расширяясь, охлаждается, а при охлаждении энергию нужно куда-то девать, то никакая тепловая машина без холодильника работать не сможет. Чтобы функционировать, тепловая машина обязательно должна отдавать часть тепловой энергии холодильнику.

Обычно температура \(T_\) немного выше температуры окружающей среды. Но если речь идет о паровых машинах, оснащенных специальным приспособлением для конденсации отработанного пара и его охлаждения – конденсатором, то \(T_\) может быть несколько ниже температуры окружающей атмосферы (рис. 3).

Примечание: Паровой конденсатор применяется только в конструкциях паровых двигателей.

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно. Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

На полезную работу тратится только часть полученной энергии.

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

\(\large Q_ \left(\text <Дж>\right) \) – тепловая энергия, полученная от нагревателя;

\(\large Q_ \left(\text <Дж>\right) \) – тепловая энергия, переданная холодильнику;

\(\large A \left(\text <Дж>\right) \) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

\[\large \boxed < Q_— \left| Q_ \right| = A >\]

Примечание: Полученная энергия берется со знаком «плюс», а утерянная – со знаком «минус». Нам уже известно, что энергия \(Q_\), переданная холодильнику и утерянная, будет отрицательной. Запишем ее по модулю, чтобы не учитывать в формуле ее знак.

Формулы коэффициента полезного действия

Мы уже выяснили, что работа газа всегда меньше полученной теплоты. Чтобы ответить на вопрос, какую часть от полученной теплоты будет составлять работа, составим дробь:

\(\large A \left(\text <Дж>\right) \) – работа газа;

Эту дробь обозначают греческой буквой «эта» \(\eta\) и называют коэффициентом полезного действия (КПД). Так как этот коэффициент дает понятие о том, как соотносятся работа, совершенная газом и, полученная им тепловая энергия.

Числитель этой дроби всегда меньше знаменателя, математики такие дроби называют правильными. Если КПД теплового двигателя описывается правильной дробью, значит, он не может превышать единицу (рис. 5).

КПД теплового двигателя не превышает единицу, так как описывается правильной дробью.

Если подставить в числитель выражение для работы, получим развернутое выражение для вычисления КПД:

Правая часть уравнения – это две дроби, имеющие одинаковые знаменатели. Если записать правую часть в виде отдельных дробей, то можно получить такое соотношение:

Подставим его в выражение для КПД и получим еще одну формулу:

Какой максимальный КПД может иметь тепловой двигатель

Талантливый французский ученый и инженер Сади Карно в 1824 году придумал идеальную тепловую машину. В качестве рабочего тела в ней выступал идеальный газ. А сосуд, в который заключен газ, обернут теплоизоляцией, которую можно мысленно снять, когда возникнет такая необходимость.

Проведя мысленный эксперимент, Карно рассчитал, какую часть полученной энергии можно превратить в полезную работу при идеальных условиях. Другими словами, он рассчитал, какой максимально возможный КПД может иметь идеальный тепловой двигатель.

Для КПД идеального двигателя он получил такую формулу:

\(\large T_ \left(K\right) \) – температура нагревателя в градусах Кельвина;

\(\large T_ \left(K\right) \) – температура холодильника в градусах Кельвина;

Из формулы следует:

Чем больше различаются температуры нагревателя и холодильника, тем выше будет КПД.

Если температура нагревателя сравняется с температурой холодильника, то полезной работы машина не совершит \(\large \eta = 0 \).

Максимальный КПД даже для идеального теплового двигателя всегда меньше единицы.

Температура холодильника не может равняться абсолютному нулю, так как достигнуть абсолютного нуля температуры не получается.

Примечание: В идеальном двигателе нет потерь энергии, так как полностью отсутствует трение между его движущимися частями. В реальных двигателях трение есть, поэтому КПД реальных двигателей всегда ниже, чем КПД идеального двигателя.

КПД реальных тепловых двигателей

КПД лучших образцов реальных двигателей, выпускаемых мировой промышленностью:

  • паровых машин — менее 10 процентов.
  • большинства двигателей внутреннего сгорания – до 30 процентов.
  • газовых турбин — примерно 40 процентов.
  • двигателя внутреннего сгорания Дизеля – около 44 процентов.

В настоящее время инженеры и ученые-физики работают над тем, чтобы в реальных двигателях уменьшить трение и потери тепловой энергии. Чтобы повысить давление в цилиндре, применяют дополнительные компрессоры и турбины. Это дает выигрыш еще в несколько процентов полезности, однако, сокращает срок службы таких двигателей.

Так называемые «атмосферники» — атмосферные двигатели внутреннего сгорания, в которых не применяются дополнительные турбины и компрессоры, повышающие рабочее давление в цилиндрах, могут без капитального ремонта прослужить на автомобилях весьма длительное время.

Некоторые автомобили, оснащенные особо удачными конструкциями двигателей, успевали без капитального ремонта двигателя проехать до 1 миллиона километров. Из-за этого, такие конструкции двигателей получили в народе название «миллионники». К сожалению, ныне выпуск подобных двигателей резко сокращен, из экономических соображений.

Источник статьи: http://formulki.ru/molekulyarka/kpd-teplovogo-dvigatelya

Читайте также:  Предохранитель вентилятора охлаждения двигателя лада гранта
Оцените статью
Все про машины