- Конденсаторы холодильных машин
- Системы холодоснабжения, принципиальные схемы
- Схема системы с чиллером наружной установки
- Схема системы с параллельным подключением двух чиллеров
- Схема системы на базе чиллера с водяным конденсатором
- Двухконтурная система холодоснабжения с промежуточным теплообменником с применением этиленгликоля
- Двухконтурная система холодоснабжения с функцией «свободного охлаждения» (Freecooling)
- Конденсатор
- Конденсаторы с воздушным охлаждением
- Конденсаторы с водяным охлаждением
- Кожухотрубные конденсаторы
- Конденсаторы типа «труба в трубе»
- Пластинчатые конденсаторы
- Коэффициент загрязнения
Конденсаторы холодильных машин
Процесс теплопередачи в конденсаторе протекает при сравнительно высоком давлении, соответствующем давлению насыщенных паров холодильного агента. Теплопередача от холодильного агента к среде осуществляется через стенки труб конденсатора при наличии разности (перепада) температур между холодильным агентом и средой. Обычно в конденсаторах устанавливаются перепады температур от 8 до 12°С при охлаждении воздухом и от 5 до 8°С при охлаждении водой.
Интенсивность теплопередачи в конденсаторе в основном зависит от перепада температур, чистоты теплопередающих труб, скорости и направления движения холодильного агента и среды, физических свойств холодильного агента и других факторов.
Существуют конденсаторы с воздушным и водяным охлаждением. По конструкции они подразделяются на трубчато-змеевиковые, кожухозмеевиковые, кожухотрубные, оросительные и испарительные.
Конденсаторы воздушного охлаждения. Конденсаторы этого типа выполняются в виде трубчато-змеевикового аппарата из стальных или медных труб диаметром 12 X1 мм с ребрами из листовой стали, латуни толщиной 0,3—0,5 мм. Трубки соединяются последовательно посредством калачей из медных труб диаметром 10×1 мм с помощью газовой сварки.
Конденсатор состоит из нескольких плоских змеевиков — секций. Число секций зависит от величины теплопередающей поверхности, определяемой расчетом по тепловой нагрузке конденсатора. На входе и выходе концы труб каждой секции объединяются в общий коллектор, а в конденсаторах более поздних моделей холодильных машин секции соединены последовательно трубками. Нагнетаемые компрессором перегретые пары холодильного агента поступают в трубки змеевиков и конденсируются. Жидкий холодильный агент собирается в ресивере. Охлаждающий воздух под действием вентилятора циркулирует между трубами и ребрами со скоростью от 2—4 м/с. Конденсаторы воздушного охлаждения холодильных агрегатов других типов по конструкции аналогичны.
Конденсаторы водяного охлаждения. На фреоновых и аммиачных холодильных машинах средней и крупной холодопроизводительности применяют конденсаторы водяного охлаждения. В малых фреоновых агрегатах конденсаторы такого типа применяются в торговых автоматах для охлаждения жидкостей и в агрегатах для стационарных холодильных камер малой емкости.
Кожухотрубные конденсаторы. Их применяют в аммиачных и фреоновых холодильных машинах средней и крупной холодопроизводительности. Они изготовляются преимущественно горизонтальными с медными или стальными трубами. По конструкции отличаются от кожухозмеевйковых наличием двух трубных решеток и двух крышек кожуха. Между собой такие конденсаторы различаются в основном величиной поверхности охлаждения, габаритами и комплектом арматуры.
Оросительные конденсаторы. Они применяются в аммиачных холодильных установках крупной холодопроизводительности. Они просты по конструкции и представляют собой плоские вертикально расположенные змеевики из стальных труб диаметром 57×3,5 мм. Секции крепят на металлическом каркасе и устанавливают над стальным или железобетонным поддоном для сбора воды. Конденсаторы комплектуется из отдельных секций (поверхность одной секции 15,4 м2). Над секциями установлены водяной бак и распределительные желоба с пилообразными верхними кромками.
Аммиак проходит внутри труб, а охлаждающая вода, стекая из желобов, равномерно орошает трубы с наружной стороны. Циркулирующий воздух частично охлаждает воду и конденсатор. Полностью охлаждается вода в градирне.
Источник статьи: http://www.xiron.ru/content/view/14677/28/
Системы холодоснабжения, принципиальные схемы
В разделе приведены некоторые наиболее часто встречающиеся схемные решения систем холодоснабжения
Схема системы с чиллером наружной установки
Система холодоснабжения с одним чиллером наружной установки с осевыми вентиляторами — одна из самых распространенных и достаточно простых систем. В качестве теплоносителя в системе, как правило, используется вода, в отдельных случаях возможно применение теплоносителей с низими температурами замерзания (раствор этиленгликоля, рассолы и т.д.).
Циркуляция теплоносителя в системе осуществляется с помощью насосной группы. На схеме показанной в качестве примера, насосная группа состоит из двух насосов, один из которых основной, второй резервный.
Расширительный мембранный бак служит как для предотвращения гидравлических ударов при работе насосов, так и для компенсации изменения объема теплоносителя вследствие изменения его температуры.
Бак — аккумулятор предназначен для увеличения тепловой инерционности системы и сокращения количества циклов пуска/остановки холодильной машины.
При использовании потребителей с переменным расходом теплоносителя (например, фанкойлов с регулированием холодопроизводительности изменением расхода двухходовыми клапанами) необходимо обеспечить постоянный расход жидкости через теплообменник испарителя холодильной машины. На схеме показан вариант с установкой регулятора перепада давлений на перемычке между распределительными коллекторами для обеспечения постоянного расхода на испарителе. В случае использования потребителей с постоянным расходом (трехходовые клапаны с байпасом на теплообменниках потребителей) перемычки с регулятором перепада не требуется.
Недостатки рассматриваемой схемы системы холодоснабжения:
- отсутствие резервирования холодильного оборудования,
- необходимость частичного сезонного слива/заправки теплоносителя (в случае использования воды) и как следствие — повышенная коррозия трубопроводов и арматуры.
- невозможность круглогодичной эксплуатации системы.
Схема системы с параллельным подключением двух чиллеров
В ряде случаев (при значительной холодопроизводительности системы, необходимости частичного резервирования холодильного оборудования) возникает необходимость в установке нескольких холодильных машин, работающих на одну систему холодоснабжения. В качестве примера приведена схема с установкой двух чиллеров с воздушным охлаждением конденсаторов.
Принцип работы системы аналогичен принципу работы системы с одним чиллером.
Недостатками рассматриваемой схемы системы холодоснабжения являются:
- необходимость частичного сезонного слива/заправки теплоносителя (в случае использования воды) и как следствие — повышенная коррозия трубопроводов и арматуры.
- колебания температуры теплоносителя при включении/ отключении одной из холодильных машин.
- невозможность круглогодичной эксплуатации системы.
Схема системы на базе чиллера с водяным конденсатором
Рассматривается схема на базе холодильной машины с водяным конденсатором. Помимо контура испарителя в системе имеется контур охлаждения конденсатора холодильной машины с раствором этиленгликоля в качестве теплоносителя.
Теплоноситель нагреваясь забирает тепло от конденсатора, затем, с помощью насосов подается на «сухую градирню» (драйкулер), где охлаждается потоком воздуха, отдавая тепло. Также как и в контуре испарителя, основными элементами контура охлаждения конденсатора являются насосы, расширительный бак.
Так как температура наружного воздуха, а как следствие и производительность драйкулера
меняется в широких пределах, в схеме предусматривается установка трехходового смесительного клапана для поддержания постоянной температуры на входе в конденсатор. Помимо этого, как правило, применяются различные способы изменения производительности драйкулера посредством изменения расхода воздуха (изменением частоты вращения вентиляторов, частичным выключением одного или нескольких вентиляторов и т.д.)
Недостатками рассматриваемой схемы системы холодоснабжения являются относительно высокая стоимость и сложность в эксплуатации.
Основное преимущество — возможность круглогодичной эксплуатации системы.
Двухконтурная система холодоснабжения с промежуточным теплообменником с применением этиленгликоля
Для устранения проблем, связанных с необходимостью сезонного слива теплоносителя из системы холодоснабжения с холодильными машинами наружной установки, зачастую используются двухконтурные схемы с промежуточным теплообменником. Следует заметить, что при применении указанной схемы необходимо обеспечить разность температур теплоносителей контура испарителя и контура потребителей.
Двухконтурная система холодоснабжения с функцией «свободного охлаждения» (Freecooling)
В целях экономии электроэнергии, сокращения количества времени работы компрессоров холодильной машины за все время эксплуатации системы холодоснабжения, возможна доработка двухконтурной системы холодоснабжения до системы с функцией «свободного охлаждения». Охлаждение теплоносителя в холодный период года осуществляется наружным воздухом с помощью драйкулера без использования холодильной машины.
Драйкулер включается в контур испарителя параллельно с основной холодильной машиной и в летний период не используется. На зимний период холодильная машина отключается от системы холодоснабжения, теплоноситель охлаждается только с помощью драйкулера.
Трехходовой клапан, показанный на схеме, предназначен как для регулирования температуры теплоносителя в процессе работы в режиме «свободного охлаждения», так и для защиты теплообменника от замерзания при пусках системы в зимний период.
Источник статьи: http://www.chillers.ru/bibl/allowances/shema.php
Конденсатор
§3.1.3 “Основные элементы холодильной машины — конденсатор” из книги “Системы вентиляции и кондиционирования. Теория и практика.”. Автор: Ананьев В.А.
Конденсатор представляет собой тепло-обменный аппарат, который передает тепловую энергию от хладагента к окружающей среде, чаще всего воде или воздуху. Тепловая энергия, передаваемая хладагентом через конденсатор, складывается из:
- тепла, поглощенного испарителем холодильного контура, и
- тепла, вырабатываемого компрессором при сжатии хладагента.
Тепло, выделяемое конденсатором, примерно равно холодопроизводительности холодильной машины, увеличенной на 30-35%. Так, для холодильной машины мощностью 10 кВт общий объем тепла, выделяемый конденсатором, составляет около 13-13,5 кВт.
Второй рабочей средой конденсатора, помимо хладагента, может служить окружающий воздух (конденсаторы с воздушным охлаждением) или жидкость (конденсаторы с водяным охлаждением).
Конденсаторы с воздушным охлаждением
Наибольшее распространение получили конденсаторы с воздушным охлаждением. Они состоят из теплообменника и блока вентилятора с электродвигателем.
Теплообменник обычно изготавливается из медных трубок диаметром 6 мм и 19 мм, как правило, с оребрением. Расстояние между ребрами обычно составляет 1,5-3 мм.
Медь легко поддается обработке, не подвержена окислению и имеет высокие показатели теплопроводности. Выбор диаметра трубок зависит от большого количества факторов: легкости обработки, потерь давления в линии хладагента, потерь давления со стороны охлаждающей воздушной среды и т.д. В настоящее время наблюдается тенденция использования трубок малого диаметра.
Оребрение трубок теплообменника чаще всего изготавливают из алюминия. Причем тип оребрения, его профиль и конфигурация могут быть весьма разнообразны и существенно влиять на тепловые и гидравлические характеристики теплообменника. Так, например, использование сложного профиля оребрения с просечками, выступами и т.п. позволяет создать большую турбулентность воздуха вблизи поверхности ребра. Тем самым повышается эффективность теплопередачи между хладагентом, проходящим по трубкам, и внешним воздухом. Хотя в этом случае несколько увеличивается гидравлическое сопротивление, что потребует установки вентилятора большей мощности, достигается существенное повышение производительности холодильной машины с лихвой оправдывает увеличенную энергоемкость установки.
Соединение трубки с ребрами может быть выполнено двумя способами:
- либо в ребре просто делается отверстие для непосредственного контакта с трубкой,
- либо в месте подсоединения ребра к трубке делается воротничок (буртик), повышающий поверхность теплообмена.
Преимущество первого варианта состоит в простоте (экономичности) производства, однако, в связи с неплотным контактом ребра с трубкой, передача тепла внешней среде ограничена.
Кроме того, при работе в загрязненной либо агрессивной атмосфере по контуру прилегания ребер к трубке может появиться коррозия. Это значительно снижает полезную поверхность теплообмена, приводит к снижению производительности и повышению температуры конденсации.
Скорость воздушного потока, проходящего через теплообменник, обычно составляет от 1,0 до 3,5 м/с.
Внутренняя поверхность трубок также может быть рифленой, что позволяет обеспечить большую турбулентность, а следовательно, теплоотдачу хладагента.
Конденсаторы обычно имеют один или несколько рядов трубок (чаще всего — до 4-х), расположенных в направлении прохождения потока охлаждающего воздуха. Трубки могут располагаться на одном уровне либо ступенями (в шахматном порядке) для повышения эффективности теплообмена (рис. 3.10).
Важным аспектом является схема движения рабочих сред в теплообменнике. Горячий хладагент поступает в конденсатор сверху и постепенно опускается вниз. В верхней части теплообменника происходит наиболее интенсивное охлаждение хладагента, для чего используется примерно 5% полезной площади теплообменника. На этом начальном участке теплообменника теплопередача весьма значительна, благодаря большому перепаду температур между хладагентом и холодным воздухом и высокому коэффициенту теплопередачи, обусловленному высокой скоростью движения хладагента.
На следующем основном участке охлаждения, составляющем около 85% всей полезной поверхности теплообменника, процесс конденсации парообразного фреона проходит при почти неизменной температуре.
Остающиеся 10% полезной поверхности теплообмена используются для «дополнительного охлаждения» хладагента. Количество отводимого в этой зоне тепла составляет примерно 5% общего показателя теплообмена, что связано с небольшим перепадом температур между хладагентом, перешедшим в жидкую фазу, и продувочным воздухом.
Температура конденсации превышает температуру окружающего воздуха примерно на 10-20°С, а температура выходящего из теплообменника воздуха на 3-5,5 °С ниже температуры конденсации.
Абсолютные показатели температуры конденсации обычно составляют 42-55 °С.
Рис. 3.10. Схема конденсатора с воздушным охлаждением. |
1 — медная трубка;
2 — оребрение
В табл. 3.11 представлена зависимость температуры конденсации парообразного фреона R-22 от температуры окружающего воздуха.
Таблица 3. 11. Зависимость температуры конденсации от температуры окружающего воздуха
Температура наружного воздуха, °C | Температура конденсации, °C |
---|---|
32 | 46-49 |
35 | 49-51 |
38 | 51-54 |
Характеристики конденсаторов зависят как от типа хладагента и температуры окружающей среды, так и от атмосферного давления окружающего воздуха (высоты над уровнем моря). При больших высотах производительность конденсатора снижается в связи с уменьшением плотности воздуха. В табл. 3.12 приведены коэффициенты, позволяющие точно скорректировать холодопроизводительность холодильных машин в зависимости от высоты над уровнем моря.
Таблица 3. 12. Коэффициент коррекции холодопроизводительности от высоты над уровнем моря
Высота над уровнем моря, м | Коэффициент коррекции холодильной мощности (холодопромзводительности) |
---|---|
300 | 0,991 |
600 | 0,981 |
900 | 0,972 |
1200 | 0,962 |
1500 | 0,953 |
1800 | 0,943 |
Конденсаторы с водяным охлаждением
Конденсаторы с водяным охлаждением по своему конструктивному исполнению подразделяются на следующие основные группы:
- кожухотрубные конденсаторы;
- конденсаторы типа «труба в трубе»;
- пластинчатые конденсаторы.
Конденсаторы первой группы чаще всего используются на установках средней и большой мощности, другие же — на установках средней и малой мощности.
Кожухотрубные конденсаторы
Выполняются в виде стального цилиндрического кожуха, с обоих концов которого приварены стальные трубные решетки. В них запрессовываются медные трубки. К трубным решеткам крепятся головки с входными и выходными патрубками для подключения к системе водяного охлаждения (рис. 3. 13).
Рис. 3.13. Схема кожухотрубного конденсатора с водяным охлаждением. |
В верхней части кожуха располагается патрубок подвода горячего парообразного хладагента, поступающего от компрессора. В нижней части установлен патрубок отвода жидкого хладагента.
Горячий парообразный хладагент омывает трубки и заполняет свободное пространство между трубками и кожухом.
Холодная вода подается по трубкам снизу и выходит через верхнюю часть кожуха. Горячий парообразный хладагент соприкасается с трубками, по которым циркулирует холодная вода, остывает, конденсируется и скапливается на дне конденсатора. Вода, поглощая тепло от хладагента, выходит из конденсатора с более высокой температурой, чем на входе. Участок «дополнительного охлаждения», если таковой предусмотрен, состоит из пучка трубок, расположенных на дне конденсатора и отделенных от остальных трубок металлической перегородкой. В таком случае поступающая в конденсатор холодная вода в первую очередь проходит через участок «дополнительного охлаждения».
Трубки конденсатора обычно изготовляются из меди и имеют номинальный диаметр 3/4″и 1″ (20 и 25 мм). С внешней стороны они имеют оребрение, позволяющее повысить теплообмен между хладагентом и находящейся внутри трубок водой.
Обычно в конденсаторах используется вода из системы оборотного водоснабжения. Температура конденсации хладагента примерно на 5 °С выше температуры воды на выходе из конденсатора. Например, при температуре воды на выходе из конденсатора 35 °С температура конденсации хладагента R-22 составляет примерно 40 °С. В этих условиях перепад температуры воды в конденсаторе не превышает 5 °С.
Для передачи 1 кВт тепла от хладагента проточной воде требуемый расход воды составит около 170 л/ч.
Конденсаторы типа «труба в трубе»
Эти конденсаторы представляют собой выполненную в виде спирали трубку, внутри которой соосно расположена другая трубка. Хладагент может перемещаться по внутренней трубке, а охлаждающая жидкость — по внешней, либо наоборот (рис. 3.14).
Рис. 3.14. Схема конденсатора типа «труба в трубе»
|
Вся конструкция может быть выполнена из меди, либо внутренняя трубка может быть медной, а внешняя — стальной.
Как внешняя, так и внутренняя поверхности трубки могут иметь оребрение, увеличивающее эффективность теплопередачи. Два потока жидкостей движутся навстречу друг другу. Вода поступает снизу и выходит сверху, хладагент перемещается в противоположном направлении.
Этот тип конденсаторов используется в автономных установках кондиционирования воздуха и установках для охлаждения воды малой мощности. В связи с тем, что конденсатор этого типа представляет собой неразъемную конструкцию, очистка трубки, по которой циркулирует вода, может проводиться только химическим путем.
Пластинчатые конденсаторы
Этот тип теплообменника отличается тем, что циркуляция жидкостей происходит между пластинами из нержавеющей стали, расположенными «елочкой» (рис. 3.15).
Внутри теплообменника создаются два независимых контура циркуляции (хладагента и охлаждающей воды), движущихся навстречу друг другу. Пластинчатые теплообменники имеют очень высокие теплотехнические характеристики, что обусловило их большое распространение в установках средней и малой мощности. Высокая эффективность этих теплообменников сочетается с компактными размерами и малой массой, небольшими перепадами температур между двумя жидкостями, что повышает эффективность установки, меньшим количеством требуемого хладагента.
Пластинчатые теплообменники используются как в качестве конденсаторов, так и в качестве испарителей.
Рис. 3.15. Схема пластинчатого конденсатора |
В табл. 3.16 приводятся наиболее часто встречающиеся значения температуры воды, используемой в конденсаторах, и соответствующие температуры конденсации.
Таблица 3.16. Температуры воды на входе в конденсатор и температуры конденсации
Температура воды на входе, °С | Температура конденсации, °С |
---|---|
16 | 32-38 |
24 | 38-40 |
Максимально допустимые при испытаниях значения давления в конденсаторах с водяным охлаждением указаны в табл. 3.17.
Таблица 3.17. Максимально допустимые значения давления в конденсаторах с водяным охлаждением
Максимальное давление в рабочем режиме со стороны контура хладагента, кПа | 2450 |
Максимальное давление в рабочем режиме со стороны контура воды, кПа | 1000 |
Коэффициент загрязнения
Коэффициент загрязнения характеризует термическое сопротивление, вызванное отложением осадка, содержащегося в воде, на внутренних стенках трубок. В результате снижается теплопередача.
Загрязнение трубок приводит к повышению средней температуры и увеличению количества охлаждающей жидкости, требуемой для охлаждения заданного количества хладагента. В результате повышается давление в контуре конденсации и, как следствие, — энергоемкость процесса.
Проблема загрязнения трубок является большим препятствием при использовании теплообменников в регионах с повышенными показателями жесткости воды.
Согласно стандарту ARI Standard 590 характеристики холодильных машин должны соответствовать коэффициенту загрязнения конденсатора:
8,8 · 10 -5 (м 2 · °C/Вт)
Для других коэффициентов загрязнения необходимо скорректировать характеристики холодильных машин. В табл. 3.18 указаны коэффициенты коррекции эффективности холодильных машин для разных коэффициентов загрязнения.
Следует отметить, что приведенные в табл. 3.18 коэффициенты обычно используются для корректировки холодо- и тепло-производительности установок большой мощности.
Для установок малой и средней мощности в качестве исходной точки принимаются чистые пластины конденсатора и испарителя, а значения поправочных коэффициентов соответствуют приведенным в табл. 3. 19.
В технической документации на оборудование обязательно приводится методика пересчета характеристик в зависимости от коэффициента загрязнения.
В табл. 3.20 указаны коэффициенты загрязнения, соответствующие различным типам используемой воды.
С целью сокращения загрязнения до минимально возможного уровня зачастую рекомендуют устанавливать скорость потока воды на уровне, превышающем 1 м/с. Рекомендуется также периодически производить очистку трубок механическим либо химическим путем.
Таблица 3.18. Коэффициенты коррекции показателей холодопроизводительности установки в зависимости от коэффициента загрязнения
Коэффициент загрязнения, м 2 · °C/Вт | Поправочный коэффициент холодопроизводительности | Поправочный коэффициент потребляемой мощности компрессора | |
---|---|---|---|
Испаритель | Конденсатор | ||
чистые трубки | 1,01 | 1,02 | 0,98 |
8,8 · 10 -5 | 1,00 | 1,00 | 1,00 |
17,6 · 10 -5 | 0,98 | 0,98 | 1,03 |
35,2 · 10 -5 | 0,94 | 0,94 |
Таблица 3.19. Коэффициенты коррекции показателей холодопроизводительности установки малой мощности в зависимости от коэффициента загрязнения
Коэффициент загрязнения, м 2 · °C/Вт | Поправочный коэффициент холодильной мощности | Поправочный коэффициент потребляемой мощности компрессора |
---|---|---|
чистые трубки | 1,00 | 1,00 |
4,4 · 10 -5 | 0,98 | 0,99 |
8,8 · 10 -5 | 0,96 | 0,99 |
17,6 · 10 -5 | 0,93 | 0,98 |
Таблица 3.20. Типичные коэффициенты загрязнения для различных типов воды
Источник статьи: http://aboutdc.ru/page/361.php