Описать схему работы холодильной машины

Устройство и принцип работы компрессионной холодильной машины

Из всех способов наибольшее применение получило охлаждение с помощью холодильных машин (машинное охлаждение), при котором используется принцип кипящих жидких газов. Работа холодильной машины полностью автоматизирована, что обеспечивает удобство в эксплуатации, безопасность работы обслуживающего персонала, возможность соблюдения требуемого температурного режима для различных видов продуктов, а также режима экономии.

Холодильная машина — «это кольцевая герметически замкнутая система, по которой циркулирует одно и то же количество рабочего вещества, называемого холодильным агентом.

В торговом машиностроении применяются холодильные машины двух видов: компрессионная и абсорбционная, в которых используются различные способы обеспечения циркуляции хладагента. В компрессионной холодильной машине для циркуляции хладагента затрачивается механическая энергия, а в абсорбционной — тепловая. Наибольшее распространение получила компрессионная холодильная машина» [10], в которой основным рабочим узлом является компрессор .

Схема компрессионной холодильной машины: 1 — компрессор; 2 — всасывающий клапан; 3 — нагнетающий воздух клапан;

4 — поршень; 5 — цилиндр; б — электропривод; 7 — электровентилятор;

8 — конденсатор; 9 — ресивер; 10- терморегулирующий вентиль; 11 — датчик;

Схема компрессионной холодильной машины: 1 — компрессор; 2 — всасывающий клапан; 3 — нагнетающий воздух клапан;

4 — поршень; 5 — цилиндр; б — электропривод; 7 — электровентилятор;

8 — конденсатор; 9 — ресивер; 10- терморегулирующий вентиль; 11 — датчик;

Компрессионная холодильная машина состоит из компрессора 1, конденсатора 8, ресивера 9, терморегулирующего вентиля 10 и испарителя 12. Эти части соединены между собой трубопроводами и образуют замкнутую герметичную систему, которая заполнена холодильным агентом — хладоном.

Компрессор служит для непрерывного отсасывания холодных паров хладона из испарителя, сжатия их и нагнетания в конденсатор. Важнейшими частями компрессора являются цилиндр 5, поршень 4 и два клапана (всасывающий 2 и нагнетающий 3). Поршень совершает в цилиндре возвратно-поступательное движение с помощью электропривода 6. При опускании поршня увеличивается объем рабочей полости цилиндра и давление в нем снижается. Вследствие этого открывается всасывающий клапан, и цилиндр заполняется парообразным хладоном, поступающим из испарителя. При поднятии поршня (при закрытых клапанах) пары хладона сжимаются и нагреваются за счет сжатия до температуры 50 — 60°С. При достижении наибольшего давления паров в цилиндре открывается нагнетающий клапан, и горячие пары хладона выталкиваются в конденсатор.

Конденсатор — это теплообменный аппарат, охлаждаемый с помощью электровентилятора. Конденсатор воздушного охлаждения представляет собой трубчатый змеевик из металлических труб с насаженными на них ребрами из металлических пластин. По змеевику сверху вниз проходит охлаждаемый холодильный агент, а снаружи змеевик обдувается воздухом от электровентилятора 7. В конденсаторе горячие пары хладона отдают свою теплоту воздуху помещения. В результате их температура понижается до температуры конденсации, которая обычно на 8-12°С выше температуры воздуха помещения. При дальнейшем охлаждении пары хладона отдают скрытую теплоту парообразования при постоянной температуре и превращаются в жидкость. Интенсивность конденсации зависит от размера охлаждаемой площади поверхности конденсатора, разности температур хладоново-го пара и воздуха помещения, а также чистоты поверхности конденсатора. Загрязнение конденсатора смазочными маслами, пылью затрудняет теплообмен между холодильным агентом и наружным воздухом. Жидкий хладон, постепенно проходя через фильтр-осушитель, накапливается в ресивере 9.

Ресивер представляет собой стальной герметичный сосуд, служащий для накопления, хранения сжиженного хладона и равномерной его подачи в другие части холодильной машины. В ресивере и конденсаторе поддерживается одинаковое давление, равное давлению конденсации. Из ресивера жидкий хладон подается к терморегулирующе-му вентилю 10.

Терморегулирующий вентиль (ТРВ) — автоматический прибор, который регулирует заполнение испарителя жидким хладоном. Основными его частями являются игольчатый клапан, закрывающий доступ жидкого хладона из ресивера в испаритель, и датчик 11, контролирую

щий температуру паров хладона на выходе из испарителя. При повышении температуры, что является признаком недостаточного заполнения испарителя, клапан вентиля автоматически открывается, увеличивая подачу жидкого хладона в испаритель. Другой важной функцией ТРВ является дросселирование (расширение жидкости при истечении через узкие отверстия) жидкого хладона. Дросселирование происходит в кольцевой щели между игольчатым клапаном и седлом вентиля. На этом участке резко падает давление жидкого хладона, поскольку в испарителе поддерживается более низкое давление, чем в конденсаторе и ресивере. При этом давление конденсации хладона понижается до давления кипения. Соответственно понижается температура кипения жидкого хладона.

Источник статьи: http://znaytovar.ru/s/Ustrojstvo_i_princip_raboty_ko.html

Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

1. Общие сведения о холодильных машинах

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

2. Термодинамические циклы холодильных установок

Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.

Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно — окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.

В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.

2.1. Воздушные холодильные установки

В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14

Рис. 14. Схема воздушной холодильной установки: ХК — холодильная камера; К — компрессор; ТО — теплообменник; Д — расширительный цилиндр (детандер)

Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 — 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается — теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра — детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

2.2. Парокомпрессорные холодильные установки

В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.

Физические параметры хладагентов

Температура кипения tкип при давлении р = 0,1 МПа, °С

Критическая температура, °С

Температура замерзания, tзам, °С

Скрытая теплота парообразования при tкип, кДж/кг

Источник статьи: http://eti.su/articles/over/over_1534.html

СХЕМЫ И ЦИКЛЫ ХОЛОДИЛЬНЫХ МАШИН

Схема охлаждения с использованием холодильной машины. От охлаждаемого воздуха холодильной камеры, имеющего низкую температуру Т0, теплоноситель (хладагент) отнимает теплоту и передает ее внешней среде, имеющей более высокую температуру Т (рис. 30.5). При этом хладагент, циркулирующий в холодильной машине, совершает обратный круговой процесс, или холодильный цикл. Из энергетического баланса видно, что теплота, передаваемая холодильной машиной внешней среде q, больше теплоты, отбираемой от камеры охлаждения q0, на величину механической работы /, затрачиваемой холодильной машиной:

Эффективность работы холодильной машины оценивается холодильным коэффициентом

где q0 — количество теплоты, удаляемой от охлаждаемого продукта, или удельная холодопроизводительность, Дж/кг; ζ—удельная механическая работа, Дж/кг.

Холодильный коэффициент в холодильной технике аналогичен термическому КПД тепловых машин, работающих по прямому циклу Карно

Компрессионные холодильные машины. В зависимости от применяемого рабочего вещества компрессионные холодильные машины разделяют на газовые (воздушные) и паровые.

Воздушная холодильная машина — самая старая из всех холодильных машин. Промышленное получение холода впервые осуществлено в таких машинах. Принцип действия воздушной холодильной машины состоит в следующем (рис. 30.6, а).

Воздух из охлаждаемого помещения I засасывается компрессором II и после адиабатического сжатия выталкивается в охладитель III, где охлаждается водой при постоянном давлении. Далее воздух поступает в детандер (расширительный цилиндр) IV и совершает в нем полезную работу в процессе адиабатического расширения до первоначального давления. При этом температура воздуха снижается до -60. -70 «С. Воздух поступает в охлаждаемое помещение.

На рисунке 30.6 теоретический цикл воздушной холодильной машины изображен на диаграммах в координатах «давление р — удельный объем v» и «температура Т—энтропия.

В координатах р—v (рис. 30.6, а) рабочий процесс выглядит следующим образом. Параметры воздуха в охлаждаемом помещении Т соответствуют состоянию точки 1. В компрессоре II воздух сжимается адиабатически до состояния, соответствующего точке 2. Линия 1—2 является адиабатой сжатия. Далее в охладителе III сжатый воздух охлаждается при постоянном давлении до состояния, характеризуемого точкой 3. Перейдя в расширительный цилиндр IV, воздух расширяется адиабатически до начального давления ро, соответствующего точке 4, и направляется в камеру охлаждения I, где отдает свою теплоту, а сам нагревается при постоянном давлении до состояния, соответствующего исходной точке 1. При расширении в расширительном цилиндре воздух совершает механическую работу, идущую на частичную компенсацию затрат энергии при сжатии воздуха в компрессоре. Итак, полный цикл преобразования параметров в данной холодильной машине состоит из двух адиабат 1—2 и 3—4 и двух изобар 2—3 и 4—1.

Площадь l-2-a-b-l на диаграмме соответствует работе, совершаемой компрессором; площадь З-4-b-а-З — работе, совершаемой сжатым воздухом в расширительном цилиндре. Разность этих площадей, равная площади фигуры 1-2-3-4-1, остается некомпенсированной и должна быть подведена к компрессору от внешнего источника работы.

В диаграмме T—s (рис. 30.6, в) теоретический цикл холодильной машины выглядит следующим образом. Изоэнтропическое сжатие в компрессоре изображается вертикалью, соответствующей процессу с постоянной энтропией. Эта вертикаль проводится от точки 1, лежащей на изобаре р0 = const, до изобары р — const. Точку 1 на изобаре р0 = const выбирают соответствующей начальной температуре Т1. Точка 2 на изобаре р — const соответствует температуре конца процесса сжатия Т2. Процесс охлаждения в охладителе III, протекающий при постоянном давлении, изображается отрезком изобары р = const, на котором точка 3 соответствует температуре окончания охлаждения Т3. Процесс адиабатического расширения в цилиндре IV изображается изоэнтропой 3—4, так как протекает при постоянной энтропии, или без потерь энергии. Точке 4 соответствует температура окончания расширения Т4. Процесс отдачи теплоты охлажденным воздухом в камере охлаждения, или процесс его нагревания в данной камере, происходит по изобаре р0 = const до состояния точки 1.

На диаграмме T—s (см. рис. 30.6, в) хорошо виден основной недостаток воздушной холодильной машины. Работа цикла этой машины l соответствует площади 1-2-3-4-1; она равна разности работ компрессора (площадь d-2-3-c-d) и расширительного цилиндра (площадь с-4-l-d-c). Работа же обратного цикла Карно lк, состоящего из двух адиабат 1—2′ и 3—4′ и двух изотерм 2’—3 и 4’— 1, значительно меньше, т. е. lк

Поэтому фактический холодильный коэффициент £ф = q/1 бу­дет меньше холодильного коэффициента eK = q/lK, который был бы, если бы машина работала по обратному циклу Карно, т. е. £ф

Источник статьи: http://infopedia.su/11xa78.html

Читайте также:  Машинно аппаратурная схема производства крекера
Оцените статью
Все про машины