Основные виды топлива для двигателей автомобилей альтернативные виды топлива

Альтернативное автомобильное топливо — плюсы и минусы

Статья об альтернативных видах топлива для машин, плюсы и минусы разных видов. В конце статьи — интересное видео об альтернативных видах автомобильного топлива.

Лишь за 1 квартал 2017 года электромобилей было продано почти на 30% больше, а машин с двигателями, работающими от природного газа, на 10%. Активнее всего на альтернативное топливо переходят испанцы, немцы и англичане, а вот россияне пока категорически отвергают подобную инженерную затею. Почему в отличие от прогрессивных европейцев отечественные автолюбители скорее пойдут на нефтяной кризис, чем пересядут на гибриды?

Гибридные автомобили в России

Следует сразу прояснить – назначением гибридных автомобилей является комфортное движение, но никак не покорение скоростей. Поэтому почти все они имеют программные ограничения по скорости, до уровня которой электромотор не будет дополнительно задействовать ДВС (двигатель внутреннего сгорания).

Несомненными преимуществами таких моторов являются:

  • экономия топлива от 15 до 40% в зависимости от модели автомобиля;
  • практически мгновенный разгон электромотора даже без переключения передач;
  • увеличение проходимого без дозаправки расстояния. Если закончится топливо в одном из двигателей, то можно дотянуть до заправки на следующем;
  • снижение выбросов углекислого газа в атмосферу;
  • гибриды и электромобили попадают под государственную программу налоговых льгот.

Хотя в Европе владельцев таких машин либо весьма существенно освобождают от налога, либо полностью.

Если все так радужно, то почему россияне не спешат их приобретать?

  1. Цена, которая выше любой другой популярной модели на 25-30%, что сразу отпугивает потенциальных покупателей. Стоит ли новомодный автомобиль таких средств?
  2. Количество автозаправочных станций и сервисов в России слишком мало, поэтому в случае поломки или во время длительного переезда водитель может столкнуться с серьезными проблемами по обслуживанию машины.
  3. В тех же сервисах, которые существуют, благодаря их дефицитному характеру, цены на услуги таковы, что проще самому разобраться в механизме.
  4. Каждые 6-7 лет придется менять аккумуляторную батарею, стоимость которой вкупе с самими работами выльется в цену небольшого бюджетного автомобиля. А российский климат и перепады температур могут еще больше сократить его жизненный срок. Кроме того, использованный аккумулятор придется соответствующим порядком утилизировать.
  5. Из-за отсутствия спроса на гибриды не существует и вторичного рынка. Таким образом, после приобретения такого автомобиля владельцу придется ездить на нем до самой старости, своей или машины.
Читайте также:  Двигатель внутреннего сгорания современных машин

В совокупности все эти факторы на данный момент делают любой автомобиль, кроме бензинового и дизельного, не практичным и недоступным для России.

Альтернативные виды топлива

Суть поиска иных источников топлива — в сохранении невозобновляемых ресурсов планеты. Исследования в данном направлении ведутся уже давно в совершенно разнообразных направлениях. Может быть, на газовых и электрических автомобилях научный прогресс и не остановится.

Масличное топливо

Еще сам Рудольф Дизель, создавший одноименный двигатель, на заре XX века предложил использовать растительное сырье в качестве топлива. Он разработал модель двигателя, работающего на арахисовом масле.

Сейчас официально подтверждено, что идея жизнеспособна, а сырьем для топлива способны послужить не только арахис, но и соя, рапс, семена подсолнечника, хлопок и даже пищевые отходы. По своим техническим качествам биотопливо ничем не отличается от традиционного дизельного, зато является абсолютно экологичным и биоразлагаемым после использования.

В Евросоюзе и Америке фермеры уже не одно десятилетие сами выращивают и используют биомассу как топливо для собственной сельскохозяйственной техники. Таким топливом можно без риска заправлять полный бак дизельного автомобиля, а также смешивать его с классическим дизелем в любой пропорции.

Достоинства:

  • универсальность для любого дизельного мотора;
  • идентичные условия хранения со стандартным топливом;
  • продление жизни двигателю благодаря высоким смазочным характеристикам;
  • удобство транспортировки, хранения и применения с связи с пониженной воспламеняемостью;
  • отсутствие классических выхлопных газов;
  • возможность непрерывно производить сырье;
  • минимальный уровень выброса углекислого газа;
  • безотходность производства;
  • топливная независимость для стран, не имеющих нефтяных источников.

Недостатки:

  • пока производство биотоплива не столь широко распространено, его продуцирование в больших объемах обходится дороже классического топлива;
  • расход биотоплива существенно выше, а производимая автомобилем мощность – ниже;
  • экономисты многих стран уверены, что задействование больших площадей для выращивания сырья для биотоплива приведет к мировому голоду.

Топливо из отходов

Компания Daimler Chrysler стала одной из первых, разработавших и выпустивших под собственным лейблом синтетический дизель из древесных отходов.

Изучение процесса термического растворения древесины начали еще столетие назад страны без собственных нефтяных ресурсов. А сейчас и лесопромышленные предприятия России, располагающиеся в отдаленных регионах и испытывающие дефицит топлива, начали собственные разработки. При содействии Государственного центра лесопромышленного комплекса был создан проект минизавода, который будет утилизировать отходы лесозаготовок. Это поможет снизить топливную зависимость от централизованных поставок и одновременно избавиться от неиспользуемых древесных отходов.

Аналогичным способом можно производить топливо не только из опилок, но и любых отходов сельского хозяйства и человеческой жизнедеятельности. Пока данное биотопливо смешивают с соляркой для повышения экологичности двигателей.

Преимущества:

  • может использоваться как самостоятельное топливо или в качестве присадки;
  • очень низкий уровень вредных выбросов;
  • переработка отходов;
  • огромные запасы сырья.

Недостатки:

  • больший расход при меньшей мощности;
  • на данный момент необходимы большие финансовые вложения для организации достаточного количества производств.

Водородное топливо

Уже сейчас GM, Honda, Hyundai, Mercedes-Benz, Toyota постепенно готовят к выпуску автомобили, функционирующие на водородном топливе. Пока весь процесс тормозит стоимость внедрения технологии, так как для набора топливных элементов нужна сверхдорогая платина в качестве катализатора.

Сам же водород планируется добывать разнообразными способами: Honda делает его путем солнечных станций, отделяющих водород от кислорода от, другие автопроизводители рассматривают варианты получения его из сельскохозяйственных отходов или посредством электролиза. Однако все признают, что внедрение новой технологии на данном этапе повысит стоимость любого бюджетного автомобиля до люксовой версии.

Преимущества:

  • высочайшие энергетические свойства;
  • не абсолютная экологичность, но более высокая по сравнению с бензином;
  • бесшумность двигателя;
  • бесконечная сырьевая база.

Недостатки:

  • стоимость получения водородного топлива в разы выше, чем бензина;
  • дороговизна и сложность устройства автомобильных водородных заправок;
  • несовершенство технологий применения, транспортировки и хранения топлива такого рода;
  • высокая стоимость и вес элементов, необходимых для работы двигателя на водородном топливе;
  • опасность возгорания при соприкосновении с обычным топливом.

Само по себе изменение конструкции автомобиля для установки газобаллонного оборудования – процедура дорогостоящая и серьезная, в ряде случаев лишающая автовладельца гарантии на машину.

С другой стороны, экономия становится очевидна уже на первых же километрах, преодоленных на газу. Это наиболее возможная альтернатива бензину и дизелю из всех вышеперечисленных. Сейчас на газу – пропане или метане — ездит довольно много коммерческого автотранспорта, частники переходят на него менее активно. Отличие между двумя видами газов таковы:

  • метан дешевле на 10-15%;
  • метан имеет меньше примесей;
  • оборудование для пропана более технологично и стоит в 2-3 раза дешевле;
  • жидкий пропан можно использовать для бензинового оборудования;
  • пропановый баллон в разы компактнее;
  • заправки для пропана более распространены;
  • дозаправка на пропане потребуется в 3-4 раза реже, чем на метане.

Преимущества:

  • наиболее очевидное достоинство – снижение расходов на заправку в 2 раза;
  • если газовое топливо внезапно закончится, автомобиль будет способен преодолеть еще несколько километров;
  • бесшумность двигателя;
  • повышение срока жизни двигателя, поршней и свечей за счет отсутствия отложений;
  • снижение расходов на масло за счет его меньшего разжижения под воздействием газа;
  • отсутствие выхлопных газов.

Недостатки:

  • высокая стоимость установки соответствующего оборудования;
  • общее утяжеление автомобиля и уменьшение полезного пространства в багажном отделении;
  • более высокий расход газового топлива;
  • снижение мощность автомобиля и затрудненный пуск при низких температурах.

Многолетние беспрерывные исследования и разработки в части альтернативных видов топлива вселяют определенный оптимизм, заставляя надеяться на сохранение столь важных природных ресурсов. К сожалению, пока можно наблюдать осторожность водителей в переходе на уже опробованные автомобильные варианты и большие трудности во внедрении новых технологий.

Смогут ли ученые совершить технологический прорыв, а автовладельцы — распрощаться с бензином? Пожалуй, в текущем десятилетии мы этого не увидим.

Видео об альтернативном топливе:

Источник статьи: http://fastmb.ru/autonews/autonews_mir/1901-alternativnoe-avtomobilnoe-toplivo-plyusy-i-minusy.html

IV Международная студенческая научная конференция Студенческий научный форум — 2012

АЛЬТЕРНАТИВНЫЕ ВИДЫ ТОПЛИВА ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

В настоящее время двигатель внутреннего сгорания остаётся основной движущей силой автомобиля. В связи с этим единственный путь решения энергетической проблемы автомобильного транспорта — это создание альтернативных видов топлива. Новое горючее должно удовлетворить очень многим требованиям: иметь необходимые сырьевые ресурсы, низкую стоимость, не ухудшать работу двигателя, как можно меньше выбрасывать вредных веществ, по возможности сочетаться со сложившейся системой снабжения топливом и др.

Нефть сегодня — основной и наиболее востребованный энергоресурс. Однако ее запасы катастрофически заканчиваются, и уже понятно, что наступает закат нефтяной эры. Чем заправляться будем?

Уже сейчас абсолютно ясно, что XXI век станет закатом нефтяной эры. Снижение темпов нефтедобычи в ряде стран, включая Россию, и снижение ее рентабельности наблюдается уже сегодня. Все это является первопричиной увеличения стоимости нефтепродуктов и, как следствие, накладывает определенные ограничения на развитие экономик отдельных стран и мировой экономики в целом. Данное обстоятельство, с учетом того, что 80% механической энергии, которую использует в своей деятельности человек, вырабатывается двигателями внутреннего сгорания, заставляет уже сегодня серьезно задуматься об альтернативном источнике энергии, не нефтяного происхождения.

В последнее время большое количество зарубежных научно-исследовательских центров моторостроительных фирм проводят исследования, направленные на экономию топлива и замену традиционных жидких углеводородных топлив новыми видами.

Рассмотрим каждый из наиболее распространенных видов альтернативного топлива более подробно.

Природный газ.

Природный газ в большинстве стран является наиболее распространенным видом альтернативного моторного топлива. Природный газ в качестве моторного топлива может применяться как в виде сжатого до давления 200 атмосфер, газа, так и в виде жидкого, охлажденного до -160°С газа. В настоящее время наиболее перспективным является применение жидкого газа (пропан-бутан). В Европе это топливо называется Liquefied petroleum gas. В Европе сегодня насчитывается около 2,8 млн машин, работающих на Liquefied petroleum gas.

Газовый конденсат.

Использование газовых конденсатов в качестве моторного топлива сведено к минимуму из-за следующих недостатков: вредное воздействие на центральную нервную систему, недопустимое искрообразование в процессе работы с топливом, снижение мощности двигателя (на 20%), повышение удельного расхода топлива.

Шахтный метан.

В последнее время к числу альтернативных видов автомобильных топлив стали относить и шахтный метан, добываемый из угольных пород. Так, к 1990 г. в США, Италии, Германии и Великобритании на шахтном метане работали свыше 90 тыс. автомобилей. В Великобритании, например, он широко используется в качестве моторного топлива для рейсовых автобусов в угольных регионах страны. Прогнозируется, что газовая добыча метана в угольных бассейнах мира уже в ближайшее время составит 96-135 миллиардов метров кубических.

Синтетический бензин.

Сырьем для его производства могут быть уголь, природный газ и другие вещества. Наиболее перспективным считается синтезирование бензина из природного газа. Из 1 м 3 синтез-газа получают 120-180 г синтетического бензина. За рубежом, в отличие от России, производство синтетического моторного топлива из природного газа освоено в промышленном масштабе. Так, в Новой Зеландии на установке фирмы «Мобил» из предварительно полученного метанола ежегодно синтезируется 570 тыс. т моторных топлив. Однако в настоящее время синтетические топлива из природного газа в 1,8-3,7 раза (в зависимости от технологии получения) дороже нефтяных. В то же время разработки по получению синтетического бензина из угля достаточно активно ведутся в настоящее время в Англии.

Спирты.

Среди альтернативных видов топлива в первую очередь следует отметить спирты, в частности метанол и этанол, которые можно применять не только как добавку к бензину, но и в чистом виде. Их главные достоинства — высокая детонационная стойкость и хороший КПД рабочего процесса, недостаток — пониженная тепловая способность, что уменьшает пробег между заправками и увеличивает расход топлива в 1,5-2 раза по сравнению с бензином. Кроме того, затруднён запуск двигателя из-за плохого испарения метанола и этанола.

Этанол (питьевой спирт), обладающий высокой энергетической ценностью, добывается из отходов древесины и сахарного тростника, обеспечивает двигателю высокий КПД и низкий уровень выбросов и особо популярен в теплых странах. Так, Бразилия после своего нефтяного кризиса 1973 г. активно использует этанол — в стране более 7 млн автомобилей заправляются этанолом и еще 9 млн — его смесью с бензином. США является вторым мировым лидером по масштабному изготовлению этанола для нужд автотранспорта. Этанол используется как «чистое» топливо в 21 штате, а этанол-бензиновая смесь составляет 10% топливного рынка США и применяется более чем в 100 млн двигателей. Стоимость этанола в среднем гораздо выше себестоимости бензина. Всплеск интереса к его использованию в качестве моторного топлива за рубежом обусловлен налоговыми льготами.

Использование спиртов в качестве автомобильного топлива требует незначительной переделки двигателя. Например, для работы на метаноле достаточно отрегулировать карбюратор, установить устройство для стабилизации запуска двигателя и заменить некоторые подверженные коррозии материалы более стойкими. Учитывая то, что чистый метанол ядовитый, необходимо предусмотреть тщательную герметизацию топливной системы автомобиля. Пары метанола более токсичны, чем пары бензина и вызывают сильные отравления при попадании в организм человека, слепоту и даже летальный исход.

А вот для работы на чистом спирте требуется увеличение вместимости топливного бака и степени сжатия до 12-14, чтобы полностью использовать детонационную стойкость топлива.

Низкое давление насыщенных паров и высокая теплота испарения спирта делают практически невозможным запуск бензиновых двигателей уже при температуре окружающей среды ниже +10°С.

Электрическая энергия.

Заслуживает внимания применение электроэнергии в качестве энергоносителя для электромобилей. Кардинально решается вопрос, связанный с токсичностью отработанных газов, появляется возможность использования нефти для получения химических веществ и соединений. К недостаткам электроэнергии как вида электроносителя можно отнести: ограниченный запас хода электромобиля, увеличенные эксплуатационные расходы, высокая первичная стоимость и высокая стоимость энергоемких аккумуляторных батарей.

Топливные элементы.

Топливные элементы — это устройства, генерирующие электроэнергию непосредственно на борту транспортного средства. В процессе реакции водорода и кислорода образуются вода и электрический ток. В качестве топлива содержащего водород, как правило, используется либо сжатый водород, либо метанол. В этом направлении работает достаточно много зарубежных автомобильных фирм, и если им в итоге удастся приблизить стоимость автомобилей на топливных элементах к бензиновым, то это станет реальной альтернативой традиционным нефтяным топливам в странах, импортирующих нефть. В настоящее время стоимость зарубежного экспериментального легкового автомобиля с топливными элементами составляет порядка 1 млн долл. США. Кроме того, к недостаткам применения топливных элементов следует отнести повышенную взрывоопасность водорода и необходимость выполнения специальных условий его хранения, а также высокую себестоимость получения водорода.

Биодизельное топливо.

В последние годы в США, Канаде и странах ЕС возрос коммерческий интерес к биодизельному топливу, в особенности к технологии его производства из растительного масла. В США планируется на 20% заменить обычное дизельное топливо биодизельным и использовать его на морских судах, городских автобусах и грузовых автомобилях. Применение биодизельного топлива связано, в первую очередь, со значительным снижением эмиссии вредных веществ в отработанных газах (на 25-50%), улучшением экологической обстановки в регионах интенсивного использования дизелей — сера в биодизельном топливе составляет 0,02%.

Биогаз.

Он представляет собой смесь метана и углекислого газа и является продуктом метанового брожения органических веществ растительного и животного происхождения. Биогаз относится к топливам, получаемым из местного сырья. Хотя потенциальных источников для его производства достаточно много, на практике круг их сужается вследствие географических, климатических, экономических и других факторов. Биогаз как альтернативный энергоноситель может служить высококалорийным топливом. Он предназначен для улучшения технико-эксплуатационных и экологических показателей работы двигателя внутреннего сгорания. Применение биогаза в качестве топлива для двигателей внутреннего сгорания позволяет снизить выбросы, а также улучшить топливную экономичность.

Отработанное масло.

В настоящее время на ряде предприятий различных стран мира весьма эффективно работают установки, преобразующие отработанное масло (моторное, трансмиссионное, гидравлическое, индустриальное, трансформаторное, синтетическое и т. д.) в состояние, которое позволяет полностью использовать его в качестве дизельного или печного топлива. Установка подмешивает очищенные (в установке) масла в соответствующее топливо, в точно заданной пропорции, с образованием навсегда стабильной, неразделяемой топливной смеси. Полученная смесь имеет более высокие параметры по чистоте, обезвоживанию и теплотворной способности, чем дизельное топливо до его модификации в установке.

Водород как альтернативное топливо.

Водород является эффективным аккумулятором энергии. Применение водорода в качестве топлива возможно в разнообразных условиях, что может дать существенный вклад в мировую энергетику, когда ресурсы ископаемого топлива будут близки к полному истощению. По сравнению с бензином и дизельным топливом водород более эффективен и меньше загрязняет окружающую среду. Взрывоопасность водорода резко снижается с применением специальных присадок.

Сейчас каждая автомобильная компания имеет концепт-кар, который работает на водороде. Однако некоторые фирмы предлагают комбинированные решения. Так, «Мазда» предлагает автомобиль, который имеет возможность чередовать топливо (водород и бензин). Другие автопроизводители совмещают эти виды топлива. В США выпускают тягачи, в двигателях которых используется смесь дизельного и водородного топлива. Это позволяет увеличить мощность двигателя, экологическую чистоту и уменьшить расход топлива. Система осуществляет разложение воды, собирает водород и направляет его в камеру сгорания, обеспечивая более высокую эффективность сгорания топлива.

Водородное топливо

Исследования Солнца, звёзд, межзвёздного пространства показывают, что самым распространённым элементом Вселенной является водород (в космосе в виде раскалённой плазмы он составляет 70 % массы Солнца и звёзд).

По некоторым расчётам, каждую секунду в глубинах Солнца примерно 564 млн. тонн водорода в результате термоядерного синтеза превращаются в 560 млн. тонн гелия, а 4 млн. тонн водорода превращаются в мощное излучение, которое уходит в космическое пространство. Нет опасений, что на Солнце скоро иссякнут запасы водорода. Оно существует миллиарды лет, а запас водорода в нём достаточен для того, чтобы обеспечить ещё столько же лет горения.

Человек живёт в водородно-гелиевой вселенной. Поэтому водород представляет для нас очень большой интерес. Влияние и польза водорода в наши дни очень велика. Практически все известные сейчас виды топлива, за исключением, разумеется, водорода, загрязняют окружающую среду. В городах нашей страны ежегодно проходит озеленение, но этого, как видно, недостаточно. В миллионы новых моделей автомобилей, которые сейчас выпускаются, заливают такое топливо, которое выпускает в атмосферу углекислый (СО2) и угарный (СО) газы. Дышать таким воздухом и постоянно находиться в такой атмосфере представляет очень большую опасность для здоровья. От этого происходят различные заболевания, многие из которых практически не поддаются лечению, а уж тем более невозможно лечить их, продолжая находиться в можно сказать «заражённой» выхлопными газами атмосфере.

Что касается воздуха, то здесь на повестке дня уже много лет стоит не менее важная проблема. И если представить, хотя бы на секунду, что все современные двигатели будут работать на экологически чистом топливе, коим, разумеется, является водород, то наша планета встанет на путь, ведущий к экологическому раю. Но это всё фантазии и представления, которые, к великому нашему сожалению ещё не скоро станут реальностью.

Сколько бы мы не говорили о положительном влиянии водорода, на практике это можно увидеть довольно таки не часто. Но всё же разрабатывается множество проектов, и целью моей работы явился не только рассказ о самом чудесном топливе, но и о его применении. Эта тема очень актуальна, поскольку сейчас жителей не только нашей страны, но и всего мира, волнует проблема экологии и возможные пути решения этой проблемы.

Водород на Земле

Водород — один из наиболее распространённых элементов и на Земле. В земной коре из каждых 100 атомов 17 — атомы водорода. Он составляет примерно 0,88 % от массы земного шара (включая атмосферу, литосферу и гидросферу). Если вспомнить, что воды на земной поверхности более

1,5∙10 18 м 3 и что массовая доля водорода в воде составляет 11,19 %, то становится ясно, что сырья для получения водорода на Земле — неограниченное количество. Водород входит в состав нефти (10,9 — 13,8 %), древесины (6 %), угля (бурый уголь — 5,5%), природного газа (25,13 %). Водород входит в состав всех животных и растительных организмов. Он содержится и в вулканических газах. Основная масса водорода попадает в атмосферу в результате биологических процессов. При разложении в анаэробных условиях миллиардов тонн растительных остатков в воздух выделяется значительное количество водорода. Этот водород в атмосфере быстро рассеивается и диффундирует в верхние слои атмосферы. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство. Концентрация водорода в верхних слоях атмосферы составляет 1∙10 -4 %.

Что такое водородная технология?

Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии.

В чём же привлекательность водорода и водородной технологии?

Переход транспорта, промышленности, быта на сжигание водорода — это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами.

Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов. Так, годовая энергетическая потребность такой высокоиндустриальной страны, как ФРГ, может быть обеспечена за счёт водорода, полученного из такого количества воды, которое соответствует 1,5% среднего стока реки Рейн. Отметим попутно, что на наших глазах становится реальной одна из гениальных догадок великого фантаста Жюля Верна, который устами героя рома «Таинственный остров» (гл. XVII) заявляет: «Вода — это уголь будущих веков».

Водород, получаемый из воды, — один из наиболее энергонасыщенных носителей энергии. Ведь теплота сгорания 1 кг H2 составляет (по низшему пределу) 120 МДж/кг, в то время как теплота сгорания бензина или лучшего углеводородного авиационного топлива — 46 — 50 МДж/кг, т.е. в 2,5 раза меньше. К тому же водород — легковозобновляемое топливо.

Чтобы накопить ископаемое горючее на нашей планете, нужны миллионы лет, а чтобы в цикле получения и использования водорода из воды получить воду, нужны дни, недели, а иногда часы и минуты.

Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить в любых количествах. В то же время водород — сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов.

Как и из чего в настоящее время получают водород?

В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёвая избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).

В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).

Получение водорода осуществляется в три стадии. Первая стадия — конверсия метана в трубчатой печи:

Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).

И, наконец, третья стадия — конверсия оксида углерода водяным паром:

Для всех указанных стадий требуется водяной пар, а для первой стадии — много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.

Рассмотрим, как это происходит в промышленных условиях (схема 1). Природный газ, содержащий в основном метан, предварительно очищают от серы, которая является ядом ля катализатора конверсии, подогревают до температуры 350 — 370 o С и под давлением 4,15 — 4,2 МПа смешивают с водяным паром в соотношении объёмов пар : газ = 3,0 : 4,0. Давление газа перед трубчатой печью, точное соотношение пар : газ поддерживаются автоматическими регуляторами.

Образующаяся парогазовая смесь при 350 — 370 o C поступает в подогреватель, где за счёт дымовых газов нагревается до 510 — 525 o С. Затем парогазовую смесь направляют на первую ступень конверсии метана — в трубчатую печь, в которой она равномерно распределяется по вертикально расположенными реакционным трубам (8). Температура конвертированного газа на выходе из реакционных труб достигает 790 — 820 o С. Остаточное содержание метана после трубчатой печи 9 — 11 % (объёмн.). Трубы заполнены катализатором.

После реакционных труб конвертированная парогазовая смесь проходит подъёмные трубы (9) и по коллектору (10) попадает в шахтный конвертор метана второй ступени (11). Здесь на никелевом катализаторе происходит кислородная конверсия остаточного метана. Температура конвертированного газа на выходе из реактора второй ступени достигает 990 — 1000 o C, остаточное содержание метана в конвертированном газе составляет 0,35 — 0,55 % (объёмн.).

После двухступенчатой конверсии метана, если водород предназначается для синтеза аммиака, в конвертированном газе кроме водорода (57%) и азота (22,4%) содержатся оксид углерода 13,4% и диоксид углерода 7,7% (объёмн.).

Оксид углерода далее превращается в водород и диоксид углерода в системе паровой конверсии. Паровая конверсия оксида углерода до водорода проводится в две ступени (схема 2). Первая ступень конверсии осуществляется при температуре 330 — 400 o С на железо-хромовом катализаторе, при этом на выходе из конвертора первой ступени (1) содержание оксида углерода в конвертированном газе падает до 3,3% (объёмн.), и с таким содержанием оксида углерода газ, пройдя через испаритель (2), вступает во вторую, низкотемпературную ступень конверсии. Здесь на низкотемпературном катализаторе конверсии, содержащем оксидные соединения меди, цинка, алюминия, хрома, при температуре 190-210 о С происходит доконверсия остаточного оксида углерода до его содержания на выходе из конвертора (3) 0,4 — 0,5 %. Далее газ поступает на очистку углерода различного рода поглотителями. Так в промышленных условиях получают чистый водород и азото-водородную смесь.

Получение водорода — будущая технология

Современная технология обеспечивает ежегодное получение во всём мире десятков миллионов тонн молекулярного водорода. Более 90% его получается каталитической конверсией метана, жидких углеводородов, газификацией твёрдого топлива. Совершенно ясно, что в будущем при переходе на водородную технологию такие источники получения водорода, кроме твёрдого топлива, будут в основном исключены. В качестве основного источника сырья будет использоваться вода. В качестве источника энергии для разложения воды — атомная энергия в различных её видах (тепло, электроэнергия) и энергия воды, ветра в виде электрической энергии, энергия солнечного излучения.

При внимательном рассмотрении всего комплекса методов получения водорода видно, что если использование горючих ископаемых имеет прямой выход к водороду, то использование других первичных источников энергии в основном базируется на использовании электрической энергии для электролитического разложения воды, энергии Солнца в фотосинтетических системах для разложения воды и атомного тепла в термохимических системах для разложения воды. Электролиз воды проводится в промышленной практике давно и широко описан в литературе. Сейчас делаются значительные усилия в науке промышленности, чтобы использовать неисчерпаемую энергию солнечного излучения для разложения воды. Это и применение фотолизных ячеек для разложения воды, солнечных ячеек для получения электроэнергии с последующим её использованием при электролизе воды. Главная задача, которая здесь решается, заключается в том, чтобы провести под непосредственным воздействием солнечной энергии ряд фотохимических реакций с целевым назначением разложения воды до водорода кислорода. Суть проблемы заключается в том, чтобы подобрать такие биологические системы, которые будут использовать солнечную энергию для разложения воды.

Но наиболее в технологическом плане являются методы термохимического разложения воды. Эти методы важны тем, что для разложения воды они могут использовать и тепло атомных реакторов, солнечное тепло, и тепло геотермальных вод, и любые другие виды тепла, например перепад температур верхних и нижних слоёв тропических морей. Разрабатываются и комбинированные термохимические процессы, которые наряду с теплом используют электрическую энергию — термоэлектрохимические процессы, солнечное излучение, фото- и термохимические процессы. Термохимические процессы разложения воды привлекательны ещё и тем, что в результате целого ряда химических превращений, протекающих в термохимическом цикле (системе), из цикла в окружающее пространство ничего, кроме водорода и кислорода, не выделяется. Все химические процессы, сопровождающие разложение воды, находятся в закрытом циркуляционном контуре. В этот контур подводятся только вода и тепло (высокопотенциальное), от контура отводятся водород, кислород и тепло (низкопотенциальное).

Водород на транспорте

Водород имеет более высокую теплоту сгорания — 120 МДж/кг, в то время, как бензин — всего 42 МДж/кг. Кроме того, единственным выхлопным газом при сгорании водорода являются водяные пары, которые вступают в естественный природный круговорот воды. А, как известно, посредством электролиза из воды можно снова получить водород. Этот замкнутый цикл, лежащий в основе идеи водородной энергетики, позволяет назвать водород одним из самых экологичных видов топлива (рис. 1).

Очевидно, что при переходе транспорта на водородное топливо экологические проблемы больших городов были бы раз и навсегда решены. Однако, перед таким переходом стоит ряд проблем, среди которых:

  • потребность вогромных энергозатратах для получения водорода электролизом воды;
  • необходимость использования специальных сверхгерметичных емкостей для хранения итранспортировки водорода, т.к. всилу малого размера молекул онобладает высокой проникающей способностью;

Необходимость создания развитой сети заправочных станций в каждом населенном пункте и вдоль крупных автомагистралей: водород — самый легкий и наименее плотный газ, поэтому автомобилю с водородным двигателем придется заправляться намного чаще, чем в автомобилям с бензиновым и дизельным двигателями.

Один из путей внедрения водорода на автотранспорте — сжигание его в ДВС. Такой подход исповедуют BMW и Mazda. Японские и немецкие инженеры видят в этом свои преимущества.

Прибавку в весе машины даёт лишь водородная топливная система, в то время, как в авто на топливных элементах прирост (топливные элементы, топливная система, электромоторы, преобразователи тока, мощные аккумуляторы) — существенно превышает «экономию» от удаления ДВС и его механической трансмиссии.

Потеря в полезном пространстве также меньше у машины с водородным ДВС (хотя водородный бак и в том, и другом случае съедает часть багажника).

Эту потерю можно было бы вообще свести к нулю, если сделать автомобиль (с ДВС), потребляющий только водород. Но тут-то и проявляется главный козырь японских и германских «раскольников».

BMW и Mazda предлагают сохранить в автомобиле возможность ездить на бензине (по аналогии с распространёнными ныне двухтопливными машинами «бензин/газ»).

Такой подход, по замыслу автостроителей, облегчит постепенный переход автотранспорта только на водородное питание.

Ведь клиент сможет с чистой совестью купить подобную машину уже тогда, когда в регионе, где он живёт, появится хоть одна водородная заправка. И ему не придётся опасаться застрять поодаль от неё с пустым водородным баком.

Меж тем, серийный выпуск и массовые продажи машин на топливных элементах долгое время будут сильно сдерживаться малым числом таких заправочных станций. Да, и стоимость топливных элементов пока велика.

Кроме того, перевод на водород обычных ДВС (при соответствующих настройках) не только делает их чистыми, но и повышает термический КПД и улучшает гибкость работы.

Дело в том, что водород обладает намного более широким, по сравнению с бензином, диапазоном пропорций смешивания его с воздухом, при которых ещё возможен поджиг смеси.

И сгорает водород полнее, даже вблизи стенок цилиндра, где в бензиновых двигателях обычно остаётся несгоревшая рабочая смесь.

Итак, «скармливаем» водород двигателю внутреннего сгорания. Физические свойства водорода существенно отличаются от таковых у бензина. Над системами питания немцам и японцам пришлось поломать голову. Но результат того стоил.

Показанные BMW и Mazda водородные автомобили сочетают привычную для владельцев обычных авто высокую динамику с нулевым выхлопом.

А главное — они куда лучше приспособлены к массовому производству, чем «ультраинновационные» машины на топливных элементах.

Водородный топливный элемент

Очевидно, что если под «водородным двигателем» понимать электрический, получающий энергию от реакции соединения водорода и кислорода в топливных элементах, то окислов азота не будет совсем. А углеводородное топливо «поставляет» при сжигании целый букет токсичных соединений, среди которых сажа — далеко не самая вредная.

«Водородное будущее» автотранспорта эксперты связывают, прежде всего, с топливными элементами. Их притягательность признают все. Никаких движущихся частей, никаких взрывов. Водород и кислород тихо — мирно соединяются в «ящике с мембраной» (так упрощённо можно представить топливный элемент) и дают водяной пар плюс электричество.

Ford, General Motors, Toyota, Nissan и многие другие компании наперебой щеголяют «топливоэлементными» концепткарами и собираются вот-вот «завалить» всех водородными модификациями некоторых из своих обычных моделей.

Водородные заправки уже появились в нескольких местах в Германии, Японии, США. В Калифорнии строят первые станции по электролизу воды, использующие ток, выработанный солнечными батареями. Аналогичные эксперименты проводят по всему миру.

Производители автомобилей сделали первые шаги в направлении водородной энергетики. В частности, уже несколько лет выпускаются так называемые гибридные автомобили, снабженные как традиционным бензиновым двигателем, так и электродвигателем, работающим благодаря водородному топливному элементу.

Водородный топливный элемент во многом напоминает обычный аккумулятор: в нем энергия химической реакции преобразуется в электрическую энергию. Принцип его действия показан на рис. 2.

Водород из специальной герметичной емкости подается в топливный элемент, состоящий из двух электродов (анода и катода) и протонообменной мембраны — материала, пропускающего только протоны. На аноде, изготовленном с использованием благородного металла (например, платины или ее сплавов), молекулы водорода распадаются на атомы и теряют электроны. Освободившиеся при этом ядра водорода, т. е. протоны, начинаются двигаться к катоду сквозь мембрану. Электроны же направляются как бы «в обход» мембраны, поскольку их она пропускать не будет. Поток электронов и представляет собой электрический ток, который потребляется электродвигателем автомобиля. Миновав двигатель, электроны поступают на катод. Там же, в свою очередь, распадаются на атомы молекулы кислорода, поступающего в топливный элемент из атмосферы. Таким образом, на катоде происходит одновременная встреча атомов кислорода, протонов и электронов: это приводит, очевидно, к образованию молекул воды, которые благополучно выводятся в за пределы элемента.

Фактически, топливный элемент позволяет провести высокоэнергетичную реакцию

но не в виде взрыва, а в спокойном, управляемом режиме.

Схематичное изображение автомобиля с топливным элементом приведено на рис. 4.

Способы хранения водорода. Существуют разнообразные способы хранения водорода. Самый эффективный из них — это баллоны. Если баллон выдерживает 300 атм, то в нем можно хранить 9%(масс) водорода; 500 атм — 11%. В США разработаны баллоны, рассчитанные на 700 атм. Они хранят 13% водорода. В ракетно-космической технике накоплен значительный опыт хранения и доставки водорода в сжиженном состоянии, при криогенных температурах. Хорошие способы его хранения — адсорбция водорода в гидридах металлов (порядка 3%) и в интерметаллидах (до 5%). Есть идеи и проводятся уже эксперименты по таким способам хранения водорода, как углеродные наноматериалы, нанотрубки и стеклянные микросферы. Целесообразно максимально согласовать во времени процессы производства водорода из традиционного топлива и его потребления, чтобы минимизировать потребность в хранении водорода.

Инженеры Honda в один голос твердят — за водородом и электричеством будущее. Через 50 лет дизельные двигатели окажутся в музеях машиностроения, а на бензиновых будут ездить лишь сентиментально настроенные старики.

Уникальных автомобилей Honda FCX Clarity, использующих для весьма комфортабельного передвижения в пространстве сжатый водород и электромотор, было построено всего 220 штук, из которых 20 были разбиты на краш-тестах, дабы развеять панику относительно безопасности водородных машин. Экспериментальный тираж, первые экземпляры которого прокатились по дорогам летом 2008 года, предназначен для сдачи в лизинг в США (конкретнее — в Калифорнии) и Японии. Лишь два автомобиля прописаны в Европе, где заправочные станции со сжатым водородом можно пересчитать по пальцам.

В силу того, что Clarity пока что все же экспериментальный проект, все нынешние пользователи машины, отобранные из 50 тысяч претендентов руководством Honda, имеют право лишь на трехлетнюю аренду машины, которая стоит в Калифорнии 600 долларов в месяц. В эту цену входит абсолютно все обслуживание автомобиля.

Так что же заставляет машину двигаться? У силовой установки FCX Clarity есть 4 основных элемента. В районе центрального тоннеля располагается батарея топливных элементов (Fuel Cell Stack) V Flow, весящая 67 кг, под капотом находится электромотор переменного тока, а в районе задней оси установлен 171-литровый бак для сжатого водорода и компактный литиево-ионный аккумулятор.

Водород, поступающий из бака в батарею топливных элементов, соединяется там с кислородом, получаемым из внешней среды. Энергия реакции преобразуется в электричество, которое питает электромотор. Дополнительная энергия, получаемая при торможении, остается в литиево-ионном аккумуляторе. Рекуперативная тормозная система здесь — почти такая же, как и у обычного гибрида. При этом КПД водородной установки в 3 раза превышает показатель традиционного бензинового двигателя и в 2 раза — гибридной силовой установки.

Первые водородные прототипы FCX (Fuel Cell eXperimental) cпецы Honda стали испытывать еще в 1999 году. С тех пор батареи топливных элементов стали намного легче и меньше, а вместо никелевых аккумуляторов стали использоваться литиево-ионные. Система рекуперации энергии также было усовершенствована. Более того, топливные ячейки стали более термостойкими: если раньше минимальной температурой для обеспечения нормальной работы был 0 градусов Цельсия, то современный FCX Clarity должен исправно функционировать и при -30 градусах.

Источник статьи: http://scienceforum.ru/2012/article/2012001453

Оцените статью
Все про машины