- Технология покраски кузова автомобиля
- ДЕТАЛИ КУЗОВА ИЗ ПЛАСТИЧЕСКИХ МАТЕРИАЛОВ
- Изготовление пластической детали кузова автомобиля
- Формирование детали кузова
- Формовать детали кузова можно различными способами, но в любом случае они должны обеспечивать следующее:
- Виды автомобильных пластиков
- Термопластики
- Термореактивные пластики (реактопласты)
- Смеси пластиков (сплавы)
- Как определить тип пластика?
- Типы автомобильных пластиков
- 9 машин с пластиковым кузовом – в чем их особенность
- Soybean Car
- Chevrolet Corvette С1
- ХАДИ-2
- Trabant
- Bayer K67
- Ё-мобиль
- BMW i3
- Alfa Romeo 4C
- Urbee Hybrid
Технология покраски кузова автомобиля
ДЕТАЛИ КУЗОВА ИЗ ПЛАСТИЧЕСКИХ МАТЕРИАЛОВ
Пластические материалы находят очень широкое применение в машиностроении. Кузова автомобилей из пластика производятся редко, но некоторые широко распространенные модели имеют наружные детали из пластика.
Е сли говорить о кузовах, полностью изготовленных из слоистых пластиков, они состоят из элементов, собранных между собой, так как форма кузова очень сложная, чтобы ее можно было сформовать целиком. Кузова из слоистого пластика не являются несущими, они устанавливаются посредством разъемного соединения на стальную раму, несущую механические узлы. Изготовление деталей осуществляется формовкой.
Изготовление пластической детали кузова автомобиля
Ч тобы изготовить деталь, нужна по меньшей мере одна форма, которая может быть охватываемой или охватывающей. Форма должна иметь уклон для извлечения из нее готового изделия. Качество поверхности формуемой детали будет тем выше, чем лучше отполирована форма.
П ри формовке детали выполняют следующие подготовительные работы. Внутреннюю поверхность формы покрывают веществом, способствующим выемке готовой детали из формы.
Исходя из сопротивления действующим нагрузкам и внешнего вида, выбирают соответствующую стеклоткань для армирования изготовляемой детали. Готовят шаблон из плотной бумаги, размечают и вырезают по шаблону стеклоткань.
Далее выбирают полиэфирную смолу соответствующего качества и характеристиками, необходимыми для последующей эксплуатации детали. В смолу вводят красители. Существует множество разновидностей смол, отличающихся различным химическим составом. Каждая из них соответствует определенному назначению. Смола, предназначенная для нанесения первого слоя на форму, получила название ледяного покрытия. Стеклоткань применяется в виде плотного материала – войлока, состоящего из коротких нитей длиной приблизительно 50 мм, расположенных хаотически и связанных друг с другом тонким слоем смолы. Толщина стеклоткани находится в пределах 1–2 мм, однако чаще всего ее измеряют по массе 1 м 2 . Наиболее часто встречаются значения 300, 450, 600, 900 г/м 2 . Это ткани различного типа, отличающиеся способом изготовления, массой и природой стекловолокна. Наибольшее распространение получила «тафта», имеющая клеточную текстуру. Стекловойлоки обладают меньшей механической прочностью, чем ткани, однако они более удобны для изготовления сложных форм.
В серийном производстве применяют другой вид стекловолокна: резаные волокна, которые имеют длину волокон, аналогичную стекловойлоку или несколько меньшую. Их применяют для изготовления основы.
Формирование детали кузова
Формовать детали кузова можно различными способами, но в любом случае они должны обеспечивать следующее:
– правильное размещение ткани в форме;
– полную пропитку ткани полиэфирной смолой без малейшего пузырька воздуха;
– достаточно высокую производительность, необходимую для серийного производства.
Д ля ознакомления с технологией производства рассмотрим формование на одной форме, или контактное формование. Это самый простой способ. При этой технологии уменьшается количество используемого материала, но требуется большее количество рабочей силы. Качество готовых деталей зависит от умения и от аккуратности исполнителей. Способ применим для изготовления одной детали, нескольких идентичных деталей или малой серии. Формы могут быть самыми различными, в том числе и очень больших размеров. Как уже говорилось, форма может быть охватываемой или охватывающей – в зависимости от желания получить хороший внешний вид внутренней или наружной поверхности детали.
Форма должна быть очень жесткой. Уклоны формы должны составлять не менее 3–5°. Если деталь, подвергаемая формовке, имеет обратный уклон, то форму выполняют из нескольких точно подогнанных частей.
Материал формы зависит от типа производства, который она должна обеспечить. Так, например:
– гипсовая форма удовлетворяет производству одной детали;
– стальная форма обеспечивает ее максимальное использование при формовании нескольких тысяч деталей;
– при изготовлении деталей мелкими сериями наиболее простым является изготовление модели, с которой затем снимают слепок формы. В этом случае форма получается из слоистого пластика (стекловолокно + полиэфирная смола). Усиление формы осуществляется посредством погружения в слоистый пластик профилированного картона или деревянных пластинок, что создает образование нервюр. Такого типа форма обеспечит изготовление многих сотен деталей.
При подготовительной работе обращается особое внимание на следующее. После вырезки полотен их помещают во влажное помещение и так, чтобы их можно было взять в порядке нанесения слоев. Среди различных по составу веществ, способствующих разделению изделия и формы, необходимо выбрать то, которое соответствует материалу формы. После сушки разделительного покрытия надо, по возможности, нанести первый закрывающий слой специальной окрашенной смолы (в некоторых случаях с наполнителем), который скрывает волокна стеклоткани, делая их незаметными на поверхности детали. Толщина слоя должна быть в пределах 0,3–0,4 мм. Если слой очень толстый, то впоследствии возникнут трещины.
Если наличие видимых волокон стеклоткани на поверхности детали не имеет значения, тогда нет необходимости накладывать закрывающий слой. В этом случае можно сразу нанести достаточно толстый слой смолы.
Чтобы избежать подтеков на вертикальных стенках, в смолу добавляют наполнитель. После нанесения первого слоя его высушивают до студнеобразного состояния перед наложением последующих слоев.
Студнеобразное состояние слоя определяют по легкому прилипанию при касании. В течение перерыва следует приготовить смолу, которая будет использоваться при формовке. Приготовление смолы осуществляют в два этапа: добавляют ускоритель полимеризации и смешивают его со всей предназначенной для использования смолой, а в случае необходимости подкрашивают. Дозирование и смешивание катализатора полимеризации является следующим этапом и производится по мере необходимости, т. е. в расчете на количество смолы, которая может быть использована в течение последующих 15 минут. Разделяют смолу, предназначенную на половину рабочего дня, на две равные порции. В одну емкость помещают полное количество ускорителя, в другую – полное количество катализатора. По мере необходимости готовят смесь равными порциями в третьей емкости. Такой способ позволяет избежать повторяющегося приготовления небольших количеств смолы и катализатора.
Дозировать смолу можно либо взвешиванием на весах, либо применением емкости, в которую помещается определенная масса смолы. Дозирование ускорителя и катализатора полимеризации производится с помощью мензурок очень маленькими дозами.
Как только покрывающий слой или первый слой смолы стал студенистым, накладывают первый слой стекловолокна. При этом можно применить легкий стекловойлок (300 г/м 2 ). При наложении первого слоя стекловолокна, как, впрочем, и при наложении последующих слоев, необходимо следить, чтобы стекловолокно ложилось в форму постепенно и ровно, особенно в местах закруглений, без образования воздушных карманов. (Карманы образуются в результате либо очень поспешного прижатия, либо неплотного сопряжения острого угла). Затем уложенное стекловолокно пропитывается. Для этого каждый рабочий снабжается банкой, содержащей количество смолы, рассчитанное на 12 мин применения, и инструментом для нанесения смолы. В качестве инструмента используют кисточки или валики. Если применяют кисточку, то лучше похлопывать концом кисти по поверхности стеклоткани, как это делается при крашении, чем растягивать слой.
После окончания пропитки не следует пытаться отделить стекловолокно, так как при этом волокна приподнимаются и вырываются. Затем, не дожидаясь загустения, укладывают слой стеклоткани. Для обеспечения высокой механической прочности можно укладывать поочередно слой стекловойлока и слой стеклоткани. Последним укладывают стекловойлок или отделочную стеклоткань (300 г/м 2 ).
При выполнении этой работы необходимо соблюдать следующие правила:
– использовать только чистые полиэтиленовые или металлические банки;
– полностью использовать смолу, содержащуюся в банке, перед заполнением ее новой порцией;
– не поддающиеся устранению воздушные пузыри нужно убрать, надрезая их лезвием бритвы;
– сразу же после применения промыть кисти, валики ацетоном или трихлорэтиленом. Промывку нужно производить до того, как произойдет полная полимеризация оставшейся и подлежащей удалению смолы;
– чтобы избежать прямого контакта смолы с кожей, работать необходимо в резиновых перчатках;
– работать можно только в вентилируемом помещении, так как пары полистирола вызывают раздражение глаз и слизистой оболочки;
– нельзя тереть глаза, так как случайно попавшие на кожу стеклянные волокна проникают в нее и могут травмировать глаза;
– помещение, в котором производится работа, должно быть защищено от холода, влажности и прямого солнечного света. Температура должна быть не ниже 20 °C;
– нельзя курить и перемещать смолы перед пламенем, так как смолы являются огнеопасными;
– выемку изделия следует производить через 12 часов. Это время можно сократить, если применить сушку в сушильной камере (температура не выше 60 °C) или нагрев инфракрасными лучами;
– после выемки изделия необходимо обрезать и загладить края;
– при желании окрасить деталь, ее зачищают шлифовальной шкуркой, а затем наносят полиуретановую краску;
– если большое количество деталей подвергается сборке склеиванием, необходимо сделать шероховатыми контактные поверхности, промыть их ацетоном, а затем склеить либо специальным клеем, либо тесьмой, пропитанной полиэфирной смолой.
Описанная технология – это практически единственный способ, с помощью которого кузовщик может по заказу клиента изготовить из слоистого пластика какие-либо детали кузова.
Познакомимся также с формовкой деталей в мешке. Работа выполняется так же, как описано выше, после чего на изделие в форме оказывают давление либо с помощью раздувающегося эластичного пузыря, помещенного в закрытую форму, либо посредством создания разрежения между гибкой мембраной и слоистым покрытием, нанесенным на форму. Полученные таким образом детали имеют наилучшее качество, так как обеспечивается более равномерная концентрация смолы. Этот способ применим для среднесерийного производства.
Чтобы обеспечить хороший внешний вид и высокое качество готового изделия, формовка во входящих друг в друга формах может производиться либо со слабым сжатием, либо без него. Способ применим в среднесерийном производстве.
Формовка под давлением во входящих друг в друга формах может производиться укладкой стекловолокна, а затем отмеренного количества смолы на форму. Сжатие позволяет обеспечить равномерное распределение смолы в детали. Обычно формы подогревают, что дает возможность применить этот способ в крупносерийном производстве, а также при производстве с первоначальным изготовлением основы будущей детали.
Обрезанные стеклянные волокна за счет разрежения прижимаются к поверхности формы, выполненной из перфорированного листа. В этом состоянии волокна пропитывают смолой из краскопульта. Форму с нанесенной на нее основой детали помещают на несколько минут в камеру для сушки. Затем полуфабрикат отделяют от формы, помещают в окончательную форму, покрывают отмеренным количеством смолы и сжимают с одновременным подогревом весь комплект в течение нескольких минут. Деталь готова. Этот способ применяют в серийном производстве кузовных деталей.
Р емонт кузова из слоистого пластика осуществляют только с наружной поверхности детали. Порядок таков. Если повреждение незначительное, поврежденную зону зашлифовывают, затем зачищенное место заполняют полиэфирной шпатлевкой. После затвердевания шпатлевку зашлифовывают, а затем красят.
Если поврежденная часть расколота со значительным количеством более или менее измельченных осколков, пилой вырезают поврежденную зону. По краям отверстия снимают фаски. Фаски должны быть очень пологими и шириной, равной как минимум трем толщинам. Ремонт можно производить как снаружи, так и изнутри детали. Фаску снимают с той стороны, откуда будет производиться ремонт. По форме ремонтируемого участка детали готовят металлический лист. Он предназначен для частичной замены исходной формы. Если ремонт производится снаружи, то лист помещают с внутренней поверхности детали. При проведении ремонта с внутренней стороны детали лист-форма должен быть расположен с наружной стороны, поверхность которой имеет лучшую отделку.
Фаску и ее края промывают ацетоном. Лист-форму покрывают разделительным веществом. Если ремонтируемая деталь по меньшей мере в одном направлении прямолинейная, то разделительное покрытие можно не наносить или помещать между листом и деталью лист полиэтилена или хлорвинила. Из стеклоткани вырезают кусочки для ремонта (заплаты) различного размера. Самый большой должен соответствовать внутренней форме поверхности фаски. Далее готовят смолу и выполняют работу так, как это описано в предыдущем разделе. Ремонт заканчивают шлифованием и покраской.
Если деталь сильно повреждена, необходимо ее заменить целиком. Поврежденную деталь вырезают как можно ближе к соединительному шву. Вырезку, а также опиливание производят с помощью инструментов, применяемых для обработки легких сплавов. Контактные поверхности зачищают опиливанием (если сборка осуществлялась склеиванием с уплотнителем) или частичным высверливанием заклепок (соединение специальными заклепками). Поверхности, подвергаемые склеиванию, протирают ацетоном. Прикладывают новую деталь. Если деталь подходит, то производят сборку. Сборку осуществляют следующими способами.
С клеивание: склеиваемые поверхности делают шероховатыми, а затем промывают ацетоном. Следует применять клей, указанный изготовителем автомобиля, с соблюдением указанных условий применения. Склеиваемые поверхности покрывают клеем, прижимают их друг к другу и удерживают, слегка прижимая, до затвердевания клеевого стыка.
Второй способ – клепка. Новую деталь закрепляют на месте с помощью тисочных зажимов или струбцин, прокладывая между губками зажимов деревянные пластинки, чтобы не поломать пластик в местах зажима губками. Сверление отверстий под заклепки осуществляется либо встречным сверлением, если на опорной поверхности имеются отверстия, либо сквозным сверлением детали и опорной поверхности, если нет ни одного отверстия. Затем разделяют предварительно скрепленные детали. Очищают поверхности от стружки и пыли. Контактные поверхности покрывают герметизирующей мастикой, снова прикладывают и закрепляют детали, совмещая их установкой стержней в отверстия. Вставляют заклепки и расклепывают. При необходимости устанавливают накладку.
Несколько слов о работе с термопластичными материалами. Эти пластики поставляются в виде полуфабрикатов: тонких листов, пластин, труб и прутков для сварки. Наиболее широкое применение среди них имеют:
– полихлорвинил, который из-за высокой химической стойкости применяется для изготовления устройств или деталей, работающих в коррозионной среде;
– метилполиметакрилат, который, будучи прозрачным, применяется в качестве задних стекол в некоторых моделях легковых автомобилей;
– плексиглас – также прозрачный материал, имеет такое же применение, что и метилполиметакрилат, а также используется для других застекленных частей кузовов, небольших фургонов, пассажирских автоприцепов.
Для разметки пластиков применяют обычный карандаш или чернильный с тонким грифелем. Тонкие листы (толщиной до 1,5 мм) можно резать ножницами. Листы толщиной 2 мм и более разрезают пилами.
Для зачистки пластиков используют станки с бесконечной абразивной лентой с крупным зерном. При зачистке необходимо быть осторожным, чтобы не вызвать нагрева пластических материалов.
Опиливают пластики напильниками с насечкой в виде свиной кожи. Если такого напильника нет, можно применять рашпиль по дереву с тонкой насечкой.
Пластик гнут следующим образом. Готовят деревянную форму со скругленными углами для создания опоры. Затем нагревают линию сгиба до температуры 120–130 °C. Нагревать можно пламенем горелки, находящейся на некотором удалении, или посредством струи нагретого воздуха, создаваемого сварочной горелкой. На предприятиях нагрев осуществляется инфракрасным излучением. Нагревают обе поверхности пластины. При достижении заданной температуры нагретая зона становится гибкой, как резина. Пластик вставляют в форму и удерживают до момента, когда температура при охлаждении достигнет 50–60 °C. Охлаждение можно ускорить путем протирки нагретого участка ветошью, смоченной в холодной воде. Если гибка выполнена не совсем так, как было задумано, то снова нагревают место изгиба, что приводит к выпрямлению пластины, затем опять производят гибку.
Нельзя перегревать место сгиба, так как это приводит к обугливанию пластика.
При необходимости объемной гибки операцию производят так же, как и предыдущую, нагревая более широкую зону и придавая ей форму цилиндра или конуса.
Сварка пластика. Для этой операции нужен вентилятор-обогреватель, снабженный устройством нагрева посредством электричества или газа. Устройство нагрева нагревает змеевик, в котором прогоняется воздух регулируемого объема. Из сопла вентилятора выходит поток воздуха, нагретого до температуры около 300 °C.
Для стыковой сварки со свариваемых деталей снимают фаски под углом 60° независимо от толщины пластика. Затем устанавливают свариваемые части и придерживают их на гладкой опоре из твердого дерева. В качестве присадки используют пруток из того же материала, что и свариваемые детали. Запиливают конец прутка приблизительно под углом 30° и устанавливают его в место сопряжения фасок перпендикулярно к поверхности деталей. Подносят горелку и наклоняют сопло под углом приблизительно 45° так, чтобы выдуваемый горячий воздух вызывал одновременное размягчение деталей и сварочного прутка. Пруток прижимают сверху вниз. При достижении достаточного размягчения сварочный пруток под действием усилия сплющивается и соединяется с деталью. Горелке сообщают движение подачи с возвратом в направлении прутка для размягчения базы.
При сварке толстых листов горелку перемещают мелкими последовательными шагами (по способу дуговой сварки). По окончании сварки по краям сварочного шва образуются наплывы затвердевшей не обгоревшей пены.
Более производительные способы сварки применяются в серийном производстве.
Соединения на клею. Детали, подлежащие соединению, должны быть точно подогнаны, обезжирены, иметь шероховатые поверхности контакта. Две склеиваемые поверхности покрывают тонким слоем клея, прижимают их друг к другу с небольшим усилием и удерживают до высыхания.
Обращаем внимание: необходимо применять именно тот клей, который предназначен для склеивания используемого пластика. Клей, который хорошо склеивает полихлорвинил, может не склеивать плексиглас или любой другой пластический материал.
Формообразование деталей из пластика осуществляется вытяжкой. Независимо от выбранного способа вытяжки необходимо, по меньшей мере, изготовить форму. Пластина, подвергающаяся вытяжке, нагревается до размягчения в печи либо инфракрасными лучами. Затем она кладется на форму. Формуют деталь следующими способами:
– с помощью пуансона, как при вытяжке металла;
– давлением воздуха – шайба прижимает пластину по контуру формы, а сжатый воздух прижимает размягченный лист пластика к стенкам формы;
– посредством вакуума – лист крепится к форме, внутри которой создается разрежение. Размягченный лист втягивается и прижимается к стенкам формы.
Пластические материалы могут подвергаться сверлению и нарезке резьбы инструментами, применяемыми для обработки легких сплавов. Трубы можно сгибать, наполнив их сухим песком или вставляя внутрь валики. Быстро соединять трубы из пластика можно с помощью муфт, тройников, которые приклеивают к трубам.
Пластические материалы могут также применяться для выравнивания поверхности кузова, в частности, для этого используется пластмасса ТПФ-37.
Для получения покрытия на основе пластмассы ТПФ-37 необходима тщательная подготовка металлической поверхности – обезжиривание и зачистка для создания требуемой шероховатости и хорошего сцепления пластмассы с металлом. Поверхность готовят не ранее чем за 8 часов до нанесения пластмассы. Порошок пластмассы перед использованием подсушивают при температуре 70–75 °C в течение 2,5 часов, перемешивая через каждые 30 минут. Во время сушки толщина слоя порошка не должна превышать 50 мм. Высушенный материал хранят в герметичной таре, оберегая его от увлажнения.
Для нанесения пластмассы на поверхность кузова можно применять установки газопламенного напыления марок УПН-4 или УПН-6–63 со специальными горелками. В них подается очищенный от влаги и масла воздух под давлением 0,5–0,6 МПа и ацетилен под давлением 0,06–0,07 МПа.
Перед нанесением пластмассы поверхность металла нагревают пламенем горелки до появления золотисто-желтого цвета побежалости, соответствующего температуре 200–220 °C. Расстояние от головки горелки до поверхности должно быть в пределах 100–150 мм. При нагреве недопустимо образование окалины (синих цветов побежалости) на поверхности металла. Подачу порошка через распылительную горелку необходимо отрегулировать так, чтобы порошок от пламени горелки расплавлялся и изменял цвет от светло-серого до черного.
После прогрева металла полным пламенем наносят первый слой пластмассы толщиной не более 0,8 мм, последующие слои наносятся при меньшем пламени. Головка распылительной горелки должна располагаться по возможности перпендикулярно к поверхности металла и находиться от нее на расстоянии 100–300 мм. На тонкий слой пластмассы черного цвета накладывают основной слой. При этом не следует касаться пластмассы пламенем горелки. Пластмасса не должна перегреваться и вскипать, при появлении на поверхности вздутия его быстро снимают деревянной лопаточкой и производят повторное напыление.
Готовый слой пластмассы уплотняют металлическим катком и лопаточкой. Для предотвращения прилипания катка к пластмассе его смачивают водой. Затем пластмассу охлаждают до температуры окружающей среды. Охлажденную поверхность обрабатывают до получения поверхности необходимой формы фибровым диском с зерном № 40. Для труднодоступных мест применяют шабер. Могут применяться и специальные рихтовочные пилы. После рихтовки на поверхности пластмассы допускается незначительная пористость.
Современные термопластичные материалы позволяют изготовить кузовные детали для разных целей. Они применяются в серийном производстве принадлежностей и деталей кузова, могут применяться для ремонта кузовов при выполнении жестяных работ на автомобилях.
Химики разработали виды пластика для изготовления кузовов, обладающие высокой прочностью и не повреждаемые при сильных ударах. На некоторых из них нельзя даже сделать царапину. Однако их серийное производство и изготовление таких кузовов на заводах пока осложнено такими проблемами, как себестоимость, которая растет вместе с увеличением прочности, и горючесть пластиковых материалов.
Источник статьи: http://www.autoezda.com/pokrascar/1156-detali-kuzova.html
Виды автомобильных пластиков
В состав современных автомобилей входит около 120 килограмм деталей, сделанных из различных видов пластика.
Термин пластики (пластмассы) описывает группу химических соединений называемых полимерами. Пластик получается нагреванием углеводородов. Используется катализатор, чтобы разбить большие молекулы на маленькие. Этот процесс называется крэкинг. Маленькие молекулы, такие как этилен, пропилен, бутан и другие называются мономерами. Большинство пластиков сделано из углеводородов, взятых из природных ископаемых (газа, нефти и других). Осуществляется химическое соединение мономеров и создание полимеров. Размер и структура молекул полимеров определяют свойства пластиков.
Существует два базовых типа пластика, которые применяются в автомобилестроении – термопластики и термореактивные пластики. Термопластики плавятся от воздействия высокой температуры, а при остывании снова затвердевают.
Термореактивные пластики никогда не плавятся и не размягчаются от температуры (не меняют форму).
Термопластики
Термопластики – это название пластиков, состоящих из разделённых разветвлённых макромолекул, которые, однако, не связаны друг с другом.
Из-за своих многочисленных положительных свойств, термопластики являются наиболее часто используемыми пластиками в автомобильной индустрии.
Термопластики могут быть расплавлены и использованы снова много раз. Это важный аспект экологичности. Термопластики являются идеальным материалом для переработки. Новые детали могут быть сделаны из старых.
Термореактивные пластики (реактопласты)
При изготовлении изделий из термореактивных пластиков происходит необратимая реакция.
Эти пластики нельзя сваривать, растворять или растягивать, как эластомеры.
Термореактивные материалы очень прочные и стойкие к высокой температуре. Они, к примеру, используются в подкапотном пространстве, рядом с двигателем.
Смеси пластиков (сплавы)
Смеси (например, такие как PP + EPDM ) чаще всего используются в дополнение к чистым формам. Смешиваются два разных типа пластика. При смешивании двух типов пластика, их свойства объединяются, и получается новый тип пластика. Этот процесс похож на смешивание металлов и получение сплавов с новыми свойствами. Кроме того, многие пластиковые детали при изготовлении усиливаются стекловолокном.
Как определить тип пластика?
Определение типа пластика необходимо для выбора способа ремонта и видов материалов, необходимых для этого.
- Тип пластика можно определить по буквенному обозначению на обратной стороне пластиковой детали. Это самый надёжный и точный способ. С обратной стороны есть несколько латинских букв — сокращение от названия пластика. Иногда дополнительные буквенные и цифровые обозначения показывают наличие различных добавок к пластику. Могут также отмечаться дополнительные свойства базового пластика (например HD-High Density, высокая плотность), а также смеси пластиков (знаком «+» тип пластика после него). Ниже в статье будут перечислены наиболее часто встречающиеся сокращения и их расшифровка. Если по каким-то причинам нет возможности определить тип пластика по коду, то можно это сделать, проделав тест.
- Тест с водой. Отрежьте маленькую полоску снизу бампера. Очистите её от загрязнений и краски, чтобы получить «голый» пластик. Поместите его в ёмкость с водой. Если пластик не тонет, то это PE , PP , PP + EPDM (термопластики). Из этих пластиков сделано 80% бамперов. 15% — это реактопласты ( PUR / TPUR ), которые потонут в воде. Остальные 5% — xenoy/polycarbonate. Такой пластик можно найти на некоторых Мерседесах и старых Фордах. Он очень жёсткий и при погружении в воду он потонет. Стоит сделать замечание, что некоторые смеси пластиков могут потонуть, хотя являются термопластиками, но в основном этот тест работает.
- Тест огнём определяет принадлежность к тому или другому типу пластика по размеру пламени, его цвету и типу дыма. Ввиду того, что в состав современных пластиковых деталей автомобиля входят различные добавки, этот тест не всегда помогает определить тип пластика правильно, поэтому мы его рассматривать не будем.
В то время как несколько видов пластика может использоваться в машине, три основных типа составляют 65% всего пластика, используемого в автомобиле: PP — полипропилен (32%), PU / PUR полиуретан (17%) и PVC — поливинилхлорид (16%).
Итак, рассмотрим наиболее часто используемые в автомобилях типы пластиков.
Типы автомобильных пластиков
ABS (Acrylonitrile Butadiene Styrene) — термопластик
Твёрдый, прочный и негибкий пластик. Он имеет высокую прочность благодаря компоненту бутадиену, а твёрдость и негибкость благодаря акрилонитрилу.
Этот пластик обязательно должен быть покрыт защитным покрытием, так как на него разрушительно действуют ультрафиолетовые лучи.
Применение: Корпуса зеркал заднего вида, колпаки колёс, автомобильные панели приборов, радиаторные решётки, молдинги, обрамления фар.
Совет по ремонту: Оптимальным методом ремонта является склеивание специальным клеем (к примеру, PlastiFix). Если применяется сваривание, то его можно дополнять эпоксидной смолой со стекловолокном (с обратной стороны) для повышения прочности.
ABS / MAT — реактопласт
Это пластик ABS , усиленный стекловолокном.
Применение: Пластиковые панели кузова.
EPDM (Ethylen-propylene-diene-monomer) — реактопласт
Часто используется в сплаве с полипропиленом ( PP ) для изготовления бамперов.
Применение: Ударопрочные вставки бампера, бампера ( PP + EPDM ).
PA (Polyamide (Nylon)) — термопластик
Умеренно жёсткий или жёсткий пластик. Хорошо шлифуется. Известен как нейлон.
Является стойким к органическим растворителям. Имеет высокую сопротивляемость к истиранию.
Применение: Пластмассовые внешние детали отделки кузова, декоративные колпаки колёс, лючки бензобака, радиаторные бачки, корпуса фар, корпус боковых зеркал, пластиковые части двигателя.
Совет по ремонту: Нагревайте пластик феном перед началом сваривания. Присадочный пруток должен смешиваться с ремонтируемым пластиком.
PC (Polycarbonate) — термопластик
У этого пластика высокая ударопрочность, даже при очень низких температурах.
Применение: Бампера, радиаторные решётки, приборная панель, корпуса фар.
Совет по ремонту: Перед сваривание пластик лучше нагреть феном.
PPO (Polyphenylene oxide) — реактопласт
Имеет хорошую стойкость к высокой температуре и высокую ударопрочность. Редко используется в чистой форме из-за сложности технологического процесса.
Применение: Хромированные пластиковые детали, решётки радиатора, обрамление фар.
PE (Polyethylene) — термопластик
Умеренно эластичный, обычно полупрозрачный пластик.
Полиэтилен имеет высокую ударопрочность и хорошо выдерживает воздействие кислот, спиртов и нефтепродуктов.
Может быть двух типов – полиэтилен низкой плотности ( PE-LD ) и полиэтилен высокой плотности ( PE-HD ).
Применение: Подкрылки, облицовка салона, расширительные бачки, бачки для «омывайки», подкрылки, бензобаки (делаются из полиэтилена высокой плотности PE- HD ).
Совет по ремонту: Нужно помнить, что на это этот вид пластика имеет плохую адгезию к ремонтным материалам и краске.
PP (Polypropylene) — термопластик
Умеренно гибкий пластик, устойчивый к воздействию химически активных жидкостей. Инертен к ультрафиолетовым лучам. Полипропилен имеет относительно слабую ударопрочность.
Применение: бампера (обычно смесь с EPDM ), изоляция проводки, корпуса аккумуляторов, подкрылки, уплотнители салона, облицовка салона, панель приборов.
Совет по ремонту: Перед нанесением грунтов или лакокрасочных материалов требуется предварительно применять специальный грунт для пластика для увеличения адгезии.
PU / PUR (Polyurethane) — реактопласт, TPU (thermoplastic polyurethane) — термопластик
Полиуретан очень износостойкий, гибкий и прочный пластик. Он может быть изготовлен твёрдым, как шар для бойлинга, а также таким мягким, как стирательный ластик.
Этот пластик представляет собой структурную пену, твёрдость и эластичность которой может варьироваться. Эластичный полиуретан может восстанавливать первоначальную форму даже после длительного физического воздействия.
Применение: Бампера, подкрылки, пластиковые накладки кузова, элементы отделки салона, панели приборов, сидения (вспененный полиуретан).
Совет по ремонту: При сваривании ( TPU ) не нужно нагревать и пытаться расплавить ремонтируемый пластик. Расплавленный присадочный пруток нужно помещать в заранее подготовленную V‑образную канавку.
PVC (Polyvinyl chloride) — термопластик
Твёрдый, хорошо шлифуется. Это гибкий пластик, имеет хорошую сопротивляемость к растворителям. Виниловая составляющая даёт хорошую прочность на разрыв, некоторые поливинилхлоридовые пластики эластичные.
Применение: Боковые молдинги дверей, элементы облицовки салона.
Для полноты обзора пластиков, приведу сводную таблицу, имеющую также обозначения других видов пластика.
Источник статьи: http://kuzov.info/vidi-avtomobilnih-plastikov/
9 машин с пластиковым кузовом – в чем их особенность
Пластик очень редко используется в конструкции автомобилей. Но есть несколько уникальных моделей машин, кузов которых сделан их этого полимерного материала.
Soybean Car
«Soybean Car» — первый в мире автомобиль с пластиковым кузовом. Интересно, что синтетический материал был получен из волокон соевых бобов, пшеницы и кукурузы , пропитанных фенольной смолой .
Автор проекта — ученый-ботаник Джордж Карвер, представивший свое творение в 1941 году . В основе «соевого» автомобиля находится стальная труба , на которую крепятся 14 пластиковых деталей . Это позволило не только уменьшить вес машины , но и заметно сэкономить на ее изготовлении .
Удивительно , но по прочности уникальный материал не отличался от металла. Генри Форд , снявшийся в ролике, демонстрирующем возможности и дизайн «Soybean Car», ударил топором по крышке багажника, а она не повредилась.
Chevrolet Corvette С1
Первое поколение « Корвета » изменило автомобильную индустрию . Машину представили в 1953 году на выставке «Motorama». Там спорткар смог не только удивить публику потрясающим внешним видом и высокой производительностью , но и передовыми достижениями в области применяемых материалов .
«Corvette C1» стала одной из первых моделей в мире , чей кузов был полностью изготовлен из стеклопластика. Полимер обладает потрясающими показателями прочности, а при этом очень легкий.
ХАДИ-2
Малоизвестный автомобиль советского производства. Его разработка пришлась на период выхода модели «Chevrolet Corvette C1». Созданием модели , заявленной как спортивно-туристический родстер (двухместный автомобиль с открытым верхом), занималось студенческое конструкторское бюро Харьковского автодорожного института .
Проект базировался на стеклопластике, а для силовой установки выбрали знаменитый мотоциклетный мотор «М-72», который имел рабочий объем 0,76 литра и скромную мощность — 22 л. с. ХАДИ-2 стал одним из главных экспонато в В ДНХ в период с 1962 по 1963 год .
Trabant
После поражения во Второй мировой войне Германия находилась в крайне тяжелом финансовом положении . Промышленные предприятия страны, потеряв большую часть своих производственных мощностей, нуждались в реконструкции и переоснащении. А обедневшему гражданскому населению были необходимы дешевые товары. Все это привело к созданию компактных машин эконом-класса .
Для снижения стоимости продукции фирма «Trabant» прибегла к довольно неординарному решению . Кузов первых моделей изготавливался из деревянного каркаса , обшитого фанерой . Деревянная основа была обтянута кожзаменителем и покрыта панелями из пластика на основе фенолформальдегидной смолы и отходов хлопкового производства .
Машина стала известной не только своим необычным дизайном, но и невысокой надежностью — многочисленными поломками в процессе эксплуатации.
Bayer K67
Автомобиль в моме нт св оего дебюта в 1967 считался гордостью немецкой химической промышленности . Разработкой спорткара занимались автомобильный гигант «BMW» и холдинг «Bayer».
Удивительно , но показ машины состоялся не на автосалоне , как это принято , а на промышленной выставке. Таким оригинальным способом концерн «Bayer» хотел продемонстрировать свои личные достижения в области создания и применения полимерных материалов .
Корпус машины отличался высокой прочностью — выдерживал даже лобовой удар. Но автомобиль не получил распространения — были изготовлены только опытные экземпляры.
Ё-мобиль
Амбициозный прое кт 2010 года ст ал попыткой современных российских конструкторов создать автомобиль с двумя источниками энергии . По задумке конструкторов, силовой агрегат должен был состоять из установленных последовательно бензинового роторно-лопастного и электрического двигателей , суммарная мощность которых достигала 100 кВт. Таким способом легче обеспечивается полный привод на колеса.
Кроме прогрессивной компоновки силовой системы , «Ё-мобиля» имеет необычный кузов. В основе конструкции лежит стальная объемная рама , а для наружных элементов используются АБС-пластик и полипропилен, подвергшийся термоформованию.
В настоящее время прое кт сч итается замороженным, а разработка роторно-лопастного двигателя и вовсе прекращена.
BMW i3
Модель стала первым серийным электромобилем известной немецкой компании . Проект строго следует требованиям концепции по производству машин, не наносящих вреда экологии, которая называется «Гармоничное развитие ».
Алюминиевая рама автомобиля дополнена прочным каркасом из углепластика. Такое решение позволило производителю полностью отказаться от центральной поддерживающей стойки .
Модель «BMW i3» получила высокие оценки как критиков , так и владельцев — высокотехнологичный хетчбэк признали « Мировым автомобилем 2017 года ».
Alfa Romeo 4C
Машина стала продолжением традиций «Chevrolet Corvette C1», но в европейском исполнении . Кузов этого спортивного автомобиля полностью изготовлен из углеродного волокна . Поэтому вес модели составил всего 895 кг.
За производительность отвечает турбированный двигатель с рабочим объемом 1,7 литра. Установка имеет мощность 240 л. с., что позволяет осуществить разгон до 100 км/ч за впечатляющие 4,5 секунды . Автомобиль используется с 2013 года для обеспечения безопасности на спортивных мероприятиях.
Urbee Hybrid
Уникальный проект с футуристическим дизайном стал первым автомобилем в мире , «распечатанным» на 3D- принтере в 2010 году . Большая часть элементов кузова и салона изготовлены из пластика и оргстекла. Модель разработала компания энтузиастов из Канады, которую волнует состояние окружающей среды.
Машина имеет двухместную конфигурацию , а ее гибридная силовая установка, состоящая из электродвигателя и мотора, работающего на бензине или этаноле, позволяет преодолеть расстояние в 100 км, потрати в в сего 3 литра топлива . В крейсерском режиме аккумулятор может подзаряжаться от солнечного накопителя, установленного на крыше.
Автомобиль был изготовлен и выставлен на обозрение специалистов в уменьшенном масштабе (размером в шесть раз меньше проектируемого варианта). В серийное производство машина не поступила.
Источник статьи: http://carextra.ru/info/osobennosti-devyati-modeley-mashin-imeyuschikh-plastikoviy-kuzov.html