Прибор для оценки дымности отработавших газов дизельных двигателей

Каталог продукции

Компания «Альфа-динамика» является ведущим российским разработчиком, производителем и поставщиком дымомеров для дизельных автомобилей – анализаторов выхлопа дизельных двигателей автомашин. На данный момент специалисты компании с успехом решают любые задачи, связанные с производством, ремонтом и сервисным обслуживанием дымомеров «Инфракар», уже успевших зарекомендовать себя в качестве надежного и высокотехнологичного оборудования, с успехом используемого на станциях ТО автомобилей, а также на других сервисно-ремонтных предприятиях, работающих с автомобильными дизельными двигателями.

Дымомер «Инфракар» – прибор, основным назначением которого является измерение дымности выхлопных газов дизельных двигателей автотранспорта. На данный момент налажено производство дымомеров различных модификаций: при необходимости специалисты «Альфа-динамика» помогут подобрать дымомер, с оптимальными техническими характеристиками.

Основные преимущества автомобильных дымомеров «Инфракар».
Дымомер автомобильных дизельных двигателей «Инфракар» имеет целый ряд достоинств, делающих данную марку оборудования одной из наиболее распространенных и часто используемых на станциях техобслуживания и линиях спецдиагностического контроля, как в России, так и в странах ближнего зарубежья. Газоанализатор дымомер «Инфракар» – это не только высочайшая точность и широкие функциональные возможности, позволяющие измерять дымность отработанных газов дизельных двигателей. Помимо этого, прибор обладает малой инерционностью, оснащен удобным выносным пультом дистанционного управления и имеет возможность подключения к персональному компьютеру по интерфейсу RS-232. Ряд моделей оснащен встроенным тахометром и каналом измерения температуры масла (модификация с индексом 3). Помимо этого, при необходимости можно приобрести автомобильный дымомер, оснащенный встроенным принтером (модификация .02) и без принтера (модификация .01), а модели дымомеров способные работать в составе линий технического контроля и мотортестерами (модификация ЛТК).

Читайте также:  Проверка генератора газ 3110 402 двигатель

Почему сегодня все чаще покупают дымомеры марки «Инфракар»?
Компания «Альфа-динамика» является не только разработчиком, производителем, но также и крупнейшей организацией, занимающейся сервисно-техническим обслуживанием газоанализаторов дымомеров марки «Инфракар». Продажа дымомеров – отнюдь не единственная услуга, оказываемая нашей компанией в рамках производства и поставок анализаторов дымности выхлопных газов автомашин с дизельным двигателем. Наши специалисты возьмут на себя все заботы, связанные с техническим обслуживанием приборов – гарантийным и послегарантийным. Ремонт дымомера осуществит технический персонал компании «Альфа-динамика» имеющий практический опыт работы с анализаторами отработанных газов, постоянно повышающий квалификацию. Неустанно совершенствуем мы также и собственную производственно-техническую базу. Срок гарантийного обслуживания дымомеров для дизельных двигателей автотранспорта составляет 12 месяцев, после чего возможна послегарантийная поддержка, включающая в себя полный комплекс работ по техническому обслуживанию приборов.

Цены указаны с учетом НДС 20% .

Источник статьи: http://www.infracar.ru/products/group21/

Автомобильный справочник

для настоящих любителей техники

Определение дымности выхлопа дизельных двигателей

Отдельные нормы, касающиеся проверки дымности выхлопа дизельных двигателей, вступили в силу задолго до ввода в действие норм, касающихся контроля содержания в отработавших газах газообразных токсичных веществ. Все существующие методы кон­троля дымности тесно связаны с используе­мым оборудованием. Вот о том, как происходит определение дымности выхлопа дизельных двигателей, мы и поговорим в этой статье.

Одной из мер дымности выхлопа (содержания сажи, твердых частиц) является дымовое число. В настоящее время для измерения этой величины в основном применяются два метода.

  • Оптический метод (измерение непрозрач­ности или потемнения отработавших газов) основан на определении ослабления светового потока при просвечивании отработавших газов (см рис «Дымомер оптического типа (абсобционный метод)» );
  • При использовании фильтрационного метода (измерение отраженного света) определенное количество отработавших газов пропускается через фильтрующий элемент. Степень почернения фильтра характеризует содержание сажи в отрабо­тавших газах (см. рис. «Дымометр (фильтрационный метод)» ).

Определение дымности выхлопа дизельных двигателей проводится только при работе двигателя под нагрузкой, поскольку только в этом режиме двигатель производит значи­тельное количество твердых частиц. Здесь наиболее распространены два разных метода проведения испытаний:

  • Измерение при полностью открытой дрос­сельной заслонке, например, на стенде с беговыми барабанами или ином стенде под нагрузкой, создаваемой тормозами автомобиля:
  • Измерение при неограниченном ускоре­нии, при резком открытии дроссельной за­слонки и нагруженном двигателе (рис. «График изменения дымности выхлопа при резком открытии дроссельной заслонки» ).

Так как результаты измерений дымности вы­хлопа варьируются в зависимости от метода проведения испытаний и нагрузки, сравнить их напрямую нельзя.

Дымомер оптического типа (абсорбционный метод)

Непрозрачность отработавших газов опреде­ляется степенью ослабления света, проходя­щего через отработавшие газы за счет абсорбции, дифракции и отражения света от твердых частиц, содер­жащихся в отработавших газах.

Для измерения полного потока на выхлоп­ной трубе монтируются излучатель и фото­детектор. В устройствах с отбором части по­тока отработавшие газы проходят через пробоотборный зонд и через трубопроводы с нагревателями нагнетаются насосом в изме­рительную камеру. Основное преимущество такой системы заключается в более высокой чувствительности, благодаря использованию более длинной измерительной камеры.

Во время свободного ускорения часть от­работавших газов, выходящих из выхлоп­ной трубы, проходит через пробоотборный зонд (см. рис. «Дымомер оптического типа (абсобционный метод)» ) и пробоотборный шланг и поступает в камеру (без вспомогательного вакуума). Поскольку давление и температура контролируются, на результаты измерений не оказывают влияния колебания давления отработавших газов.

Через отработавшие газы, находящиеся в испытательной камере, пропускаются свето­вые лучи. Фотоэлементы регистрируют сни­жение интенсивности света после прохож­дения камеры; это снижение соответствует непрозрачности Т (в %) или коэффициенту абсорбции к. Точно определенная длина ка­меры и поддержание в чистоте оптического окна (при помощи воздушной завесы, т.е. поперечного воздушного потока) являются основными условиями обеспечения высокого уровня точности и повторяемости результа­тов измерений.

Во время испытаний под нагрузкой обе­спечивается непрерывный процесс изме­рений дымности с индикацией получаемых данных. Результаты испытаний при свобод­ном ускорении могут быть сохранены в виде кривой изменений дымности в цифровом виде. Дымометр автоматически определяет максимальное значение и производит расчет среднего значения дымности для нескольких периодов подачи газа (см. рис. «График изменения дымности выхлопа при резком открытии дроссельной заслонки» ).

Дымомер (фильтрационный метод)

В соответствии с этим методом измерений определенный объем отработавших газов прокачивается через бумажный фильтр (см. рис. «Дымометр (фильтрационный метод)» ). Степень зачернения бумаги выра­жается в виде показателя содержания сажи (от нуля до десяти).

малых концентраций сажи, можно скомпен­сировать при помощи непрерывно рабо­тающего насоса. Степень зачернения бумаги затем преобразуется в стандартный объем при стандартных условиях. Система также учитывает «мертвый объем» между пробоот­борником и бумажным фильтром.

Для оптико-электронной оценки почер­нения фильтрующей бумаги применяется светоотражающий фотометр. Результат предоставляется в виде показателя содержания сажи или дымового числа филь­тра (FSN). Для перевода дымового числа в концентрацию по массе в мг/м 3 может быть применена эмпирическая корреляция.

Источник статьи: http://press.ocenin.ru/opredelenie-dymnosti-vyhlopa-dizel/

Автомобильный справочник

для настоящих любителей техники

Приборы для измерения концентрации токсичных веществ в отработавших газах

Для проверки концентрации токсичности веществ в отработавших газах применяют многокомпонентные газоанализаторы, а для проверки дымности – дымомеры. Вот о том, какие используются приборы для измерения концентрации токсичных веществ в отработавших газах, мы и поговорим в этой статье.

Для автомобилей с бензиновыми двигате­лями, количество газообразных токсичных веществ в пробах вычисляется исходя из кон­центрации токсичных веществ в пробах отра­ботавших газов и воздуха разбавления. Стан­дартная процедура для этой цели (см. табл. «Методики испытаний» ) определена нормами контроля токсичности отработавших газов.

В основном, для измерения концентраций газообразных токсичных веществ в отрабо­тавших газах автомобилей с бензиновыми и дизельными двигателями используется одни и те же измерительные приборы. Однако в отношении измерения концентрации углеводо­родов (НС) имеют место некоторые различия. Анализу подвергается не содержимое мешков для сбора проб, а часть непрерывного потока разбавленных отработавших газов. Затем к по­лученному значению прибавляется концентра­ция, измеренная в ходе дорожных испытаний. Причина такого подхода заключается в том, что углеводороды (имеющие высокую темпера­туру кипения) конденсируются в (не нагретом) мешке для сбора проб отработавших газов.

В исследовательских целях на многих ис­пытательных стендах установлены системы непрерывного измерения концентраций токсичных веществ в системе выпуска от­работавших газов автомобиля или в системе разбавления отработавших газов. Это необ­ходимо для получения данных о тех или иных подлежащих контролю компонентах, а также компонентах, на которые требования норм не распространяются. Для этого требуется ис­пользовать методы испытаний, не указанные в табл. «Методики испытаний» , например:

  • Парамагнитный метод (для измерения кон­центрации O2);
  • Детектор Cutter FID: комбинация пламенно­ионизационного детектора и поглотителя неметановых углеводородов (для измере­ния концентрации СН4);
  • Массовая спектроскопия (многокомпо­нентный анализатор);
  • FTIR-спектроскопия (инфракрасная спек­троскопия с преобразованием Фурье, многокомпонентный анализатор);
  • Инфракрасная лазерная спектроскопия (многокомпонентный анализатор).

Ниже приведены описания некоторых изме­рительных приборов.

NDIR-анализатор

NDIR-анализатор (недисперсионный инфра­красный анализатор) использует свойство некоторых газов поглощать инфракрасное из­лучение в узком диапазоне длин волн. Погло­щенное излучение преобразуется в энергию колебаний или вращения молекул поглощаю­щего вещества. В свою очередь эту энергию можно измерить, как тепловую энергию. Вы­шеописанное явление относится к веществам, молекулы которого состоят из атомов как ми­нимум двух различных элементов, например, СО, СO2, С6Н14 или SO2.

Существует несколько вариантов NDIR- анализаторов; основными компонентами яв­ляются источник инфракрасного излучения (рис. «Измерительная камера анализатор NDIR» ), поглощающая ячейка (кювета), че­рез которую проходит газ, эталонная ячейка, обычно расположенная параллельно по­глощающей ячейке (заполненная инертным газом, например, N2), вращающийся преры­ватель и детектор. Детектор состоит из двух камер, соединенных мембраной и содержа­щих образцы анализируемых газов. Излуче­ние из эталонной ячейки поглощается в одной камере детектора, а из кюветы — в другой.

Интенсивность излучения из кюветы может быть снижена за счет поглощения испытуе­мым газом. Разность энергий излучения вы­зывает возникновение потока, который может быть измерен датчиком потока или датчиком давления. Вращающийся прерыватель преры­вает инфракрасное излучение, что вызывает изменение направления потока и, следова­тельно, модуляцию сигнала датчика.

NDIR-анализаторы очень чувствительны к присутствию в анализируемом газе влаги, по­скольку молекулы Н2O поглощают инфракрас­ное излучение в широком диапазоне длин волн. По этой причине NDIR-анализаторы располага­ются после системы обработки газа (например, газоохладителя), служащей для осушения от­работавших газов, если выполняются измере­ния неразбавленных отработавших газов.

Хемилюминесцентный детектор (CLD)

В реакционной камере испытуемый газ смеши­вается с озоном, производимым из кислорода посредством электрического разряда (рис. «Конструкция хемилюминесцентного детектора (CLD)» ). В этой среде оксид азота, содержащийся в ис­пытуемом газе, окисляется до диоксида азота. Некоторые из вновь образовавшихся молекул находятся в возбужденном состоянии. Когда эти молекулы возвращаются в исходное со­стояние, происходит высвобождение энергии в виде света (хемилюминесценция). Величина излученной световой энергии измеряется де­тектором (например, фотоумножителем). При определенных условиях величина этой энергии пропорциональна концентрации оксида азота (NO) в испытуемом газе.

Поскольку стандарт устанавливает общее предельное содержание оксидов азота в отрабо­тавших газах, требуется определять количество молекул NO и NO2. Однако, т.к. принцип действия хемилюминесцентного детектора ограничивает область его применения измерением только концентрации NO, испытуемый газ пропускается через преобразователь, в котором диоксид азота восстанавливается до оксида азота.

Пламенно-ионизационный детектор (FID)

Испытуемый газ сжигается в пламени водо­рода (см. рис. «Конструкция пламенно-ионизационного детектора (FID)» ), в результате чего образуются углеродные радикалы, некоторые из которых временно ионизируются. Ионизированные радикалы разряжаются на электроде коллек­тора. Величина возникающего при этом элек­трического тока пропорциональна количеству атомов углерода в испытуемом газе.

Детекторы GC FID и Cutter FID

Существуют два основных метода измерения концентрации метана в испытуемом газе Оба метода включают использование комби­нации сепаратора метана (СН4) и пламене-­ионизационного детектора. Для сепарирова­ния метана используется хроматографическая колонка (GC FID), или нагреваемый каталитиче­ский нейтрализатор, окисляющий отличные от метана углеводороды.

В отличие от детектора cutter FID, детектор GC FID может определять концентрацию СН4 только в прерывистом режиме (типичные ин­тервалы между измерениями составляют от 30 до 45 секунд).

Парамагнитный детектор (PMD)

Существуют различные конструкции пара­магнитных детекторов (в зависимости от из­готовителя). Принцип действия этих детекто­ров заключается в том, что в неоднородных магнитных полях вещества с парамагнитными свойствами (такого как кислород) воздей­ствуют на молекулы. Возникающие при этом силы вызывают движение молекул. Это дви­жение регистрируется специальным детекто­ром и его интенсивность пропорциональна концентрации молекул в испытуемом газе.

Измерение содержания твердых частиц

Кроме измерения концентрации газообразных токсичных веществ, измеряется содержание в отработавших газах твердых частиц, поскольку они также являются загрязняющими агентами, содержание которых ограничивается нормами. В настоящее время законодательство предпи­сывает использование для измерения содержа­ния твердых частиц гравиметрического метода.

Гравиметрический метод (с использованием фильтра твердых частиц)

Часть разбавленных отработавших газов от­бирается из канала разбавления во время дорожных испытаний и пропускается через фильтры твердых частиц. Количество твер­дых частиц в отработавших газах (нагрузка фильтров) вычисляется, как разность весов фильтров твердых частиц до испытания и по­сле него. Затем содержание твердых частиц, произведенных во время испытания, вычис­ляется, исходя из нагрузки фильтров, общего объема разбавленных отработавших газов и частичного объема отработавших газов, про­шедших через фильтры твердых частиц.

Гравиметрический метод имеет следую­щие недостатки:

  • Относительно высокий предел детектиро­вания, который можно только в ограничен­ной степени снизить, при помощи сложных измерительных приборов, а также путем оптимизации геометрии канала;
  • Невозможность непрерывного измерения содержания твердых частиц;
  • Необходимость в сложном кондициониро­вании фильтров твердых частиц с целью сведения к минимуму влияния окружаю­щей среды;
  • Невозможность определения химического состава и размеров твердых частиц.

Подсчет количества твердых частиц

В связи с вышеуказанными недостатками гравиметрического метода и с целью сниже­ния предельных значений, некоторые законо­датели в будущем также ограничат не только массу, но и количество твердых частиц.

В качестве устройства для подсчета ко­личества твердых частиц в соответствии со стандартом был заявлен «Конденсационный счетчик твердых частиц» (СРС). В этом счет­чике небольшая часть потока разбавленных отработавших газов (аэрозоль) смешивается с насыщенными парами бутанола. Конден­сация паров бутанола на твердых частицах вызывает значительное увеличение размера частиц, что дает возможность подсчитать их количество в рассеянном свете.

Количество твердых частиц в разбавлен­ных отработавших газах определяется непре­рывно. Интегрирование измеренных значе­ний позволяет получить количество твердых частиц, произведенных во время испытаний.

Определение распределения твердых частиц по размеру

В настоящее время возрастает интерес к рас­пределению твердых частиц, содержащихся в отработавших газах по размеру. Примерами устройств, позволяющих получать такие дан­ные, являются:

  • Сканирующий мобильный определитель размеров частиц (SMPS);
  • Электрический импактор низкого давле­ния (ELPI);
  • Дифференциальный мобильный спектро­метр (DMS).

Испытания грузовых автомобилей

Измерения количества выбросов дизельных двигателей большегрузных грузовых авто­мобилей массой свыше 8500 фунтов, тре­буемые в США, начиная с 1986 модельного года, и в Европе, с вступлением силу норм Евро-4 для автомобилей массой свыше 3,5 т производится на динамических испытатель­ных стендах с использованием метода CVS (отбор проб при постоянном объеме). Од­нако, в связи с большими размерами дви­гателей, для обеспечения такой же степени разбавления отработавших газов, как для легковых и малотоннажных грузовых автомо­билей, требуется значительно более высокая производительность вентиляторов. Двойное разбавление (через вторичный канал), одо­бренное законодателем, помогает в некото­рой степени решить эту проблему.

Требуемый объемный расход разбав­ленных отработавших газов в критических условиях может быть обеспечен при помощи воздуходувки Рутса или трубки Вентури. Дру­гой возможностью является определение содержания твердых частиц в частичном по­токе разбавленных отработавших газов (при условии измерения концентраций остальных токсичных веществ в необработанных отра­ботавших газах).

Также ожидается, что с введением следую­щих, более строгих норм (например, Евро-6), для большегрузных грузовых автомобилей будут также установлены предельно допу­стимые значения количества твердых частиц.

Источник статьи: http://press.ocenin.ru/pribory-dlya-izmereniya-kontsentratsii-t/

Оцените статью
Все про машины