Режим электромагнитного тормоза асинхронной машины

Тормозные режимы асинхронной машины

Способы торможения. Тормозные режимы возникают в машине естественно при определенных условиях работы или создаются искусственно с целью ускорения процесса остановки двигателя. Торможение может быть: генераторное (с отдачей энергии в сеть), торможение противовключением и динамическое.

Генераторный режим асинхронной машины и генераторное торможение. Асинхронная машина, работающая в режиме генератора, приводится во вращение посторонним двигателем в направлении вращения поля статора. Частота вращения ротора п в генераторном режиме больше частоты вращения поля n1(n>n1), поэтому скольжение s будет отрицательным и наводимая ЭДС в обмотке статора E1>U. В результате ток статора I1 меняет фазу на 180°. Электромагнитная сила также изменяет направление и возникающий момент противодействует вращению ротора.

Для создания вращающегося магнитного поля необходима реактивная мощность, соответствующая намагничивающему току I1к.р..

Необходимость в реактивной мощности ограничивает широкое применение асинхронного генератора.

Генераторное торможение возникает в описанном выше генераторном режиме за счет противодействующего электромагнитного момента. Например, в грузоподъемной машине при опускании груза частота вращения ротора п может стать больше частоты вращения поля n1. Тогда электромагнитный момент изменяет свой знак и становится тормозным.

3.15.3. Торможение противовключением. Этот способ осуществляется изменением направления вращения поля в работающем двигателе путем переключения любых двух фаз (рис. 3.32). На рисунке показано переключение фаз А и В.

Когда машина работает в двигательном режиме, переключатель находится в нижнем положении 1. При торможении он перебрасывается в положение 2, фазы А и В меняются местами. Поле при этом будет вращаться в противоположном направлении, а электромагнитный момент изменит направление на противоположное.

Рис. 3.32 Рис. 3.33

Под влиянием сил инерции ротор будет продолжать вращаться в прежнем направлении, а электромагнитный момент будет его тормозить. Механическая характеристика 2 при торможении показана на рис. 3.33. Торможение происходит путем перехода из точки а двигательного режима (характеристика 1) в точку b тормозного режима и далее по тормозной характеристике 2 частота вращения падает до нуля (точка с). Когда частота вращения ротора становится равной нулю, двигатель надо отключить от сети, так как в противном случае ротор начнет вращаться в противоположном направлении.

Динамическое торможение. Этот способ осуществляется путем отключения статора от сети переменного тока и включения обмотки статора на сеть постоянного тока (рис. 3.34). В двигательном режиме замкнуты контакты К1 и разомкнуты контакты К2. В тормозном режиме контакты К1 разомкнуты, а К2 замкнуты. В результате МДС статора создает неподвижное магнитное поле.

Взаимодействие магнитного поля статора с током ротора создает на валу двигателя тормозной момент. Механические тормозные характеристики показаны рис. 3.35. В этом случае ротор тормозится до полной остановки без дополнительных устройств.

Источник статьи: http://electrono.ru/elektricheskie-mashiny/tormoznye-rezhimy-asinxronnoj-mashiny

Режим электромагнитного тормоза

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение sэто величина, которая показывает, насколько синхронная частота n1магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение — это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкркритического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.

Режим двигателя

Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.


Рис. 2.9

Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 2.9). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 2.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.

Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой S. Скольжение может измеряться в относительных единицах и в процентах.

При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

0 n0). Этот режим может наступить, например, при регулировании частоты вращения ротора.

Пусть n>n0. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 2.10). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).


Рис. 2.10

Таким образом, в режиме генератора скольжение изменяется в пределах:

Режим электромагнитного тормоза

Этот режим работы наступает, если ротор и магнитное поле вращаются в разные стороны. Этот режим работы имеет место при реверсе асинхронного двигателя, когда изменяют порядок чередования фаз, т.е. изменяется направление вращения магнитного поля, а ротор по инерции вращается в прежнем направлении.

Согласно рис. 2.11 электромагнитная сила будет создавать тормозной электромагнитный момент, под действием которого будет снижаться частота вращения ротора, а затем произойдёт реверс.

В режиме электромагнитного тормоза машина потребляет механическую энергию, развивая на валу тормозной момент, и одновременно потребляет из сети электрическую энергию. Вся эта энергия идёт на нагрев машины.


Рис.2.11

Таким образом, в режиме электромагнитного тормоза скольжение изменяется в пределах:

Источник статьи: http://megalektsii.ru/s43938t6.html

АСИНХРОННАЯ МАШИНА В РЕЖИМЕ ГЕНЕРАТОРА И ЭЛЕКТРОМАГНИТНОГО ТОРМОЗА

Рассмотрим ротор асинхронной машины, который вращается в том же направлении, что магнитный поток, но с частотой п2 > п1 [это мо­жет иметь место при спуске грузов, когда момент, создаваемый гру­зом, совпадает по направлению с вращающим моментом и ускоряет вращение ротора. При таком соотношении частот вра­щения скольжение s = (n1 – n2 ) / n1 становится отрицательным. Актив­ная составляющая тока ротора

становится также отрицательной, т. е. противоположной вектору э. д. с. . Реактивная составляющая тока ротора

остается индуктивной по отношению к э. д. с. Вектор полного тока ротора . Ток статора , напряжение

Из векторной диаграммы видно, что активная со­ставляющая тока статора I1a противоположна по фазе напряжению сети.

Генераторный режим асинхронной машины:

а) схема создания режима; б) векторная диаграмма.

Это означает, что асинхронная машина не потребляет активную мощность из сети, а, наоборот, отдает ее. Следовательно, машина пе­решла в генераторный режим. Частоты тока и напряжения сети оди­наковы. Практически асинхронные генераторы на электростанциях не применяют, так как для создания магнитного потока они потребля­ют из сети большой реактивный ток. Генераторный режим используют для подтормаживания асинхронных двигателей при плавных спусках грузов.

Режим, при котором направление вращения ротора асинхронной машины противоположно направлению вращения магнитного потока, называется режимом электромагнитного тормоза. Его применяют для экстренного торможения асинхронного двигателя ,осу­ществляемого путем изменения направления вращения магнитного потока статора, в то время как ротор продолжает вращение в прежнем направлении. Этот способ торможения называется также торможени­ем противовключением. В таком режиме ротор быстро тормозится и, когда частота его вращения станет равной нулю, напряжение сети должно быть отключено.

В режиме электромагнитного тормоза скольжение .

Следовательно, сопротивление ротора уменьшается по сравнению с сопротивлени­ем в момент пуска (s = 1), а ток ротора и соответственно ток статора становятся больше пускового тока. Поэтому режим электромагнитного тормоза применяют только для двигате­лей с фазным ротором. Одно­временно с изменением направ­ления вращения магнитного по­тока статора к фазной обмотке ротора обычно подключают до­бавочный реостат для умень­шения токов ротора и статора.

Источник статьи: http://studopedia.ru/14_19666_regulirovanie-chastoti-vrashcheniya-asinhronnih-dvigateley.html

Читайте также:  Замена тормозов пежо 408
Оцените статью
Все про машины