- Сжиженный природный газ (СПГ), технологии сжижения
- Сжиженные газы. Методы производства
- Технология получения малотоннажного СПГ с двумя контурами охлаждения
- Качество СПГ определяется не только нормативными документами на поставку газа, определённые требования накладывает сам процесс сжижения. В статье в качестве энергоэффективного холодильного цикла для получения СПГ высокого качества рассмотрена технология малотоннажного производства, с метановым и азотным контурами охлаждения
Сжиженный природный газ (СПГ), технологии сжижения
Это природный газ, искусственно сжиженный путем охлаждения до −160 °C
В промышленности газ сжижают как для использования в качестве конечного продукта, так и с целью использования в сочетании с процессами низкотемпературного фракционирования ПНГ и природных газов, позволяющие выделять из этих газов газовый бензин, бутаны, пропан и этан, гелий.
СПГ получают из природного газа путем сжатия с последующим охлаждением.
При сжижении природный газ уменьшается в объеме примерно в 600 раз.
Перевод 1 тонны СПГ в кубометры (м 3 ).
Поэтому, в зависимости от компонентного состава изменяется и количество м 3 газа при переводе из тонн.
Процесс сжижения идет ступенями, на каждой из которых газ сжимается в 5-12 раз, затем охлаждается и передается на следующую ступень.
Ныне применяются 2 техпроцесса:
- конденсация при постоянном давлении (компримирование), что довольно неэффективно из-за энергоемкости,
- теплообменные процессы: рефрижераторный — с использованием охладителя и турбодетандерный/дросселирование с получением необходимой температуры при резком расширении газа.
В процессах сжижения газа важна эффективность теплообменного оборудования и теплоизоляционных материалов.
При теплообмене в криогенной области увеличение разности температурного перепада между потоками всего на 0,5ºС может привести к дополнительному расходу мощности в интервале 2 — 5 кВт на сжатие каждых 100 тыс м 3 газа.
Недостаток технологии дросселирования — низкий коэффициент ожижения — до 4%, что предполагает многократную перегонку.
Применение компрессорно-детандерной схемы позволяет повысить эффективность охлаждения газа до 14 % за счет совершения работы на лопатках турбины.
Термодинамические схемы позволяют достичь 100% эффективности сжижения природного газа:
- каскадный цикл с последовательным использованием в качестве хладагентов пропана, этилена и метана путем последовательного снижения их температуры кипения,
- цикл с двойным хладагентом — смесью этана и метана,
- расширительные циклы сжижения.
Известно 7 различных технологий и методы сжижения природного газа:
- для производства больших объемов СПГ лидируют техпроцессы AP-SMR™, AP-C3MR™ и AP-X™ с долей рынка 82% компании Air Products,
- технология Optimized Cascade, разработанная ConocoPhillips,
- использование компактных GTL-установок, предназначенных для внутреннего использования на промышленных предприятиях,
- локальные установки производства СПГ могут найти широкое применение для производства газомоторного топлива (ГМТ),
- использование морских судов с установкой сжижения природного газа (FLNG), которые открывают доступ к газовым месторождениям, недоступным для объектов газопроводной инфраструктуры,
- использование морских плавающих платформ СПГ, к примеру, которая строится компанией Shell в 25 км от западного берега Австралии.
Процесс сжижения газа:
- установка предварительной очистки и сжижения газа,
- технологические линии производства СПГ,
- резервуары для хранения, в тч специальные криоцистерны, устроенные по принципу сосуда Дюара,
- для загрузки на танкеры — газовозы,
- для обеспечения завода электроэнергией и водой для охлаждения.
Существует технология, позволяющая сэкономить на сжижении до 50% энергии, с использованием энергии, теряемой на газораспределительных станциях (ГРС) при дросселировании природного газа от давления магистрального трубопровода (4-6 МПа) до давления потребителя (0,3-1,2 МПа):
- используется как собственно потенциальная энергия сжатого газа, так и естественное охлаждение газа при снижении давления.
- дополнительно экономится энергия, необходимая для подогрева газа перед подачей к потребителю.
Транспортировка СПГ— это процесс, включающий в себя несколько этапов:
- морской переход танкера — газовоза,
- автодоставка с использованием спецавтотранспорта,
- ж/д доставка с использованием вагонов-цистерн,
- регазификация СПГ до газообразного состояния.
Регазифицированный СПГ транспортируется конечным потребителям по газопроводам.
Основные производители СПГ по данным 2009 г:
Катар -49,4 млрд м³, Малайзия — 29,5 млрд м³; Индонезия-26,0 млрд м³; Австралия — 24,2 млрд м³; Алжир — 20,9 млрд м³; Тринидад и Тобаго -19,7 млрд м³.
Основные импортеры СПГ в 2009 г: Япония — 85,9 млрд м³; Республика Корея -34,3 млрд м³; Испания- 27,0 млрд м³; Франция- 13,1 млрд м³; США — 12,8 млрд м³; Индия-12,6 млрд м³.
Производство СПГ в России
На 2018 г в РФ действует 2 СПГ-завода.
СПГ-завод проекта Сахалин-2 запущен в 2009 г, контрольный пакет принадлежит Газпрому, у Shell доля участия 27,5%, японских Mitsui и Mitsubishi — 12,5% и 10% .
По итогам 2015 г производство составило 10,8 млн т/год, превысив проектную мощность на 1,2 млн т/год.
Однако из-за падения цен на мировом рынке доходы от экспорта СПГ в долларовом исчислении сократились по сравнению с 2014 г на 13,3% до 4,5 млрд долл США/год.
2 м крупным игроком на рынке российского СПГ становится компания НОВАТЭК, которая в январе 2018 г ввела в эксплуатацию СПГ — завод на проекте Ямал-СПГ.
Новатэк-Юрхаровнефтегаз (дочернее предприятие Новатэка ) выиграл аукцион на право пользования Няхартинским участком недр в ЯНАО.
Няхартинский участок недр нужен компании для развития проекта Арктик СПГ. Это 2 й проект Новатэка, ориентированный на экспорт СПГ.
В США введены в эксплуатацию 5 терминалов по экспорту СПГ общей мощностью 57,8 млн т/год.
На европейском газовом рынке началось жесткое противостояние американского СПГ и российского сетевого газа.
Источник статьи: http://neftegaz.ru/tech-library/energoresursy-toplivo/141460-szhizhennyy-prirodnyy-gaz-spg-tekhnologii-szhizheniya/
Сжиженные газы. Методы производства
Смеси углеводородов (пропана, пропилена, бутана, бутилена и небольших количеств этана и этилена), находящихся при относительно небольших давлениях или при пониженных температурах в жидком состоянии, а при нормальных условиях — газообразном, составляют группу сжиженных углеводородных газов. Их хранят и транспортируют в жидком, а используют в газообразном виде. Сырьем для производства сжиженных газов являются попутные нефтяные газы, жирные газы газоконденсатных месторождений и газы переработки нефти* Сжиженные газы могут иметь и искусственное происхождение.
Поскольку попутный нефтяной газ представляет собой многокомпонентную смесь из легких и тяжелых углеводородов, то задачей газобензинового производства является разделение этой смеси на следующие отдельные фракции:
- Этан — Отбензиненный газ;
- Бутан — Сжиженный газ;
- Пентан — Газовый бензин.
Технология такого разделения основана на различной упругости насыщенных паров (рис. 1.2) и на различии в давлениях конденсации отдельных компонентов смеси. При изменениях температуры или объема такой двухфазной системы (пар — жидкость) равновесие ее нарушается и тут же восстанавливается. Например, при постоянстве температуры сжатие паровой фазы приводит к конденсации части паров, а при увеличении объема испаряется часть жидкости. В обоих случаях давление паровой фазы, соответствующее данной температуре, остается неизменным.
Аналогично при сохранении постоянства объема паровой фазы повышение температуры сопровождается испарением части жидкости с соответствующим повышением давления, т. е. упругости насыщенных паров углеводорода. Охлаждение двухфазной системы при неизменности объема влечет понижение упругости насыщенных паров.
Промышленными методами производства сжиженных газов являются компрессионный, адсорбционный и абсорбционный. Принципиальная сущность технологии этих способов может быть рассмотрена на упрощенных схемах соответствующих установок.
Компрессионный метод основан на различии давлений и температур конденсации отдельных компонентов смеси углеводородных газов, составляющих попутный нефтяной газ. В этом случае исходный попутный газ (рис. 1.3) после очистки в сепараторе 1 от взвешенных частиц нефти, влаги и пыли сжимается в компрессоре 2 до давления 17—20 кгс/см 2 и затем последовательно охлаждается в конденсаторах 3 и 5. В процессе первой стадии охлаждения из смеси конденсируются и собираются в сепараторе сырого бензина 4 наименее упругие пары пентана, в конденсаторе 5 конденсируются пары пропана и бутана. После разделения в сепараторе 6 сконденсированные пропан и бутан поступают в емкости сжиженного газа, а сохранившие газообразное состояние метан и этан по газопроводу отбензиненного газа направляются к потребителю.
Адсорбционный (углепоглотителъный) метод основан на способности некоторых твердых пористых тел (активированного угля, силикагеля и др.) избирательно удерживать (адсорбировать) на поверхности пор и микропор тяжелые углеводороды и выделять их при последующем нагреве и увлажнении. Основным аппаратом адсорбционной установки (рис. 1.4) является адсорбер 1, заполненный активированным углем. Очищенный исходный попутный газ проходит в адсорбере снизу вверх через слой угля и насыщает его поры тяжелыми углеводородами, а легкие углеводороды — метан и этан, не осевшие в порах угля, выходят из адсорбера в газопровод отбензиненного газа. По окончании насыщения угля углеводородами через адсорбер сверху вниз подается водяной пар, который, нагревая и увлажняя уголь, осуществляет десорбцию тяжелых углеводородов и уносит их в виде паров. Пары воды и углеводородов проходят через конденсатор 2 и поступают в сепаратор 3, в нижней части которого скапливается конденсат водяного пара, над ним — более легкий конденсат пентана, а в паровом пространстве — пары пропана и бутана. Через регуляторы уровня вода из сепаратора сбрасывается в канализацию, пентан — в емкости сырого бензина, а пары пропана и бутана поступают под купол газгольдера 4. По мере скопления в газгольдере пары пропана и бутана сжимаются компрессором 5 до 17—20 кгс/см 2 и после охлаждения в конденсаторе 6 накапливаются в виде конденсата в сепараторе сжиженного газа 7, а из него периодически перемещаются в сборные емкости.
Для восстановления адсорбционной активности угля его надо просушить и охладить. Для этого дутьевой вентилятор 8 нагнетает в адсорбер выбрасываемые через свечу 10 горячий воздух, нагреваемый в калорифере 9, а затем — холодный воздух, пропускаемый помимо калорифера. Непрерывность действия установки обеспечивается комплектованием групп адсорберов, по три в каждой. Это позволяет одновременно осуществлять в группе все основные операции: адсорбцию, десорбцию и регенерацию активных адсорбционных свойств угля.
Абсорбционный (маслопоглотителъный) метод основан на способности масел (например, солярового) в холодном виде избирательно растворять в себе (абсорбировать) тяжелые углеводороды, а при нагревании выделять их обратно.
Очищенный попутный нефтяной газ (рис. 1.5) поступает в нижнюю часть абсорбера 1, представляющего собой колонну с тарельчатыми насадками, в которой снизу вверх движется газ, а противотоком сверху вниз стекает по тарелкам масло. Конструкция тарелок обеспечивает хороший контакт газа с маслом, в результате чего масло растворяет основную массу тяжелых углеводородов. Легкие углеводороды поступают в верхнюю часть абсорбера и по газопроводу отбензиненного газа направляются к потребителю. Скапливающееся в нижней части абсорбера масло, насыщенное углеводородами, подается в подогреватель 2, затем десорбер 3. Выделяющиеся из нагретого масла тяжелые углеводороды поступают в компрессор 4, где сжимаются до 17—20 кгс/см 2 . Охлаждаются они в две стадии — в конденсаторах 5 и 7. После первой стадии в сепараторе 6 сырого бензина накапливается жидкий пентан, а в сепараторе 8 — сжиженная пропан-бутановая фракция. Освободившееся от углеводородов нагретое масло из нижней части десорбера 3 насосом 9 перекачивается через холодильник 10 в верхнюю часть абсорбера 1 для повторения цикла.
Из рассмотренных методов в газобензиновом производстве наиболее распространен метод масляной абсорбции, отличающийся простотой установки, большой производительностью и достаточно высокой степенью извлечения тяжелых углеводородов из исходных газов.
Источник: « Основы газоснабжения » Н.А. Скафтымов
Источник статьи: http://fas.su/%D0%BD%D0%BE%D0%B2%D0%BE%D1%81%D1%82%D0%B8/%D0%BF%D1%83%D0%B1%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D0%B8/%D1%81%D0%B6%D0%B8%D0%B6%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5-%D0%B3%D0%B0%D0%B7%D1%8B-%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D1%8B-%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%B0
Технология получения малотоннажного СПГ с двумя контурами охлаждения
Качество СПГ определяется не только нормативными документами на поставку газа, определённые требования накладывает сам процесс сжижения. В статье в качестве энергоэффективного холодильного цикла для получения СПГ высокого качества рассмотрена технология малотоннажного производства, с метановым и азотным контурами охлаждения
Наиболее перспективным сектором применения СПГ является его использование в качестве моторного топлива на автомобильном, морском и железнодорожном транспорте, а также на объектах тепло- и электрогенерации.
Производство СПГ является ключевым звеном в построении инфраструктуры производства, хранения, распределения и потребления сжиженного природного газа.
Источниками газа для малотоннажного СПГ могут служить как традиционные магистральные и распределительные газопроводы, так и низконапорные месторождения природного газа, а также шахтный метан, метан угольных пластов и биогаз.
Определяющими параметрами при проектировании установок по получению СПГ является не только производительность, но и состав газа, поскольку требования к его очистке очень жесткие и связаны с тем, что при криогенных температурах примеси выпадают в твердом виде и забивают арматуру. Еще большее значение играет и качество получаемого СПГ и, как следствие, свойства газа, полученного после регазификации СПГ.
Оптимизация технологий является одним из способов совершенствования эффективности в СПГ-индустрии [1] . Внедрение инноваций на установках предварительной обработки газа, обеспечивают преимущества того или иного проекта по сжижению газа. При производстве СПГ, основное внимание должно уделяться мероприятиям по подготовке газа к ожижению, т.е. по доведению природного газа до параметров, позволяющих конденсацией получить СПГ требуемого качества [2] , при этом данная стадия составляет значительную часть капитальных вложений и эксплуатационных расходов завода по производству СПГ.
Наличие в газе паров воды и углекислого газа вызывает серьезные проблемы при ожижении газа. При охлаждении газа в системе происходит конденсация водяных паров и, следовательно, образование в ней водного конденсата. Последний с компонентами природного газа образует гидраты или лёд. Выпадение твердой углекислоты – «сухого льда» – также нежелательно. Такие отложения уменьшают сечение трубопроводов, ухудшают теплообмен, а при отложении на дросселях или попадании в детандер приводят к аварийным остановкам. Кроме того, наличие воды в системе усиливает коррозию оборудования, особенно при содержании в сырьевом газе кислых компонентов. Следовательно, природный газ перед подачей на ожижение необходимо подвергать глубокой осушке и очистке.
Традиционные методы обработки бедного газа для удаления тяжелых углеводородов, такие как абсорбция, низкотемпературная сепарация и конденсация, могут иметь более высокие экономические издержки, уменьшать мощность установки и усложнять процесс [3] .
В таблице 1 приведено качественное сравнение методов подготовки газа к сжижению — очистки от тяжелых углеводородов (коррекция состава), кислых примесей и осушки.
Процесс подготовки газа
Возможность глубокой очистки и осушки
Применение высоких/низких температур
Наличие сбросных газов
Изменение углеводородного состава
Как видно из таблицы, несмотря на наличие газов регенерации, для глубокой очистки и осушки газа наиболее перспективно выглядит последовательное соединение блоков мембранного разделения и КЦА.
Помимо способа подготовки, на качество СПГ значительно влияет процесс сжижения. В настоящее время при малотоннажном производстве СПГ используются дроссельные, детандерные и комбинированные криогенные циклы – такое деление опирается на способ получения холода.
Дроссельные циклы характеризуются относительной простотой и надежностью, однако эффективность их мала, коэффициент ожижения сравнительно низок, давление рабочего тела должно быть высоким 15,0-25,0 МПа. В РФ такая установка работает на ГРС «Никольская» Тосненского района Ленинградской области [4] .
При производстве СПГ высокого качества нецелесообразно использовать холодильные циклы, использующие только дросселирование, из-за малой степени ожижения и, как следствие, большой концентрации тяжёлых примесей в жидкой фазе, поэтому для производства СПГ высокого качества применимы только процессы с внешней холодильной машиной.
В России установки с дроссельным циклом высокого давления с предварительным фреоновым охлаждением на АГНКС и ГРС работают в г. Первоуральск, г. Калининграде и г. Пскове.
Недостатки дроссельного цикла создали предпосылки для перехода к созданию установок сжижения, специально оптимизированных для работы в условиях ГРС в широком диапазоне их технических характеристик и технологических параметров.
К таким установкам можно отнести установку дроссельного цикла с вихревой трубой (ГРС «Выборг») и установку с дроссельно-эжекторным циклом высокого давления и предварительным фреоновым охлаждением (АГНКС-500 «Развилка») [4] .
Также в малотоннажном производстве СПГ используются детандерные циклы различных модификаций. Следует выделить два случая использования детандеров. Первый, когда детандер применяется в цикле, где рабочим телом является сам природный газ (установка сжижения на ГРС-4 в г. Екатеринбург). Второй, когда детандер устанавливается во внешнем контуре, где рабочим телом может быть чистое рабочее тело (азот), или смесь (азот-углеводороды) – в России реализована установка сжижения с азотным циклом в Пермском крае.
В некоторых случаях применение двух детандеров, установленных на разных температурных уровнях, позволяет создать ожижитель с низким удельным энергопотреблением.
В качестве энергоэффективного холодильного цикла с долей ожижения не менее 90% от объёма направляемого на ожижение природного газа для получения СПГ высокого качества с учётом минимальных эксплуатационных затрат и отсутствия необходимости использования привозных хладоагентов (фреонов или индивидуальных углеводородов) предлагается применять установку малотоннажного производства, использующую холодильный цикл с двумя детандерами (азот и метан). При этом, необходимо обеспечивать как глубокую очистку от углекислоты, осушку природного газа, так и коррекцию его состава.
Технологическая схема блока сжижения такой установки приведена на рисунке 1.
Природный газ из газопровода высокого давления после очистки от механических примесей и направляется на комбинированную установку предварительной подготовки природного газа перед сжижением с применением полупроницаемых мембран и короткоцикловой адсорбции по технологии [5] , [6] (на схеме не показана).
Далее подготовленный природный газ после блока подготовки газа смешивается с природным газом открытого холодильного цикла и поступает на всас компрессора К-200. Здесь газ сжимается до 40-45 атм., после чего поток направляется на охлаждение в АВО АВО-200 и затем на вторую ступень компримирования в компрессор К-201. Давление газа в компрессоре К-201 повышается до 70 атм. Далее газ поступает на охлаждение в АВО-201.
После компримирования природный газ направляется в теплообменник Т-200, где газ охлаждается за счет работы азотного и метанового холодильных циклов. После этого от основного потока природного газа отделяется часть газа на открытый холодильный цикл, а поток газа на сжижение направляется во вторую секцию основного теплообменника (Т-200), где его температура снижается до еще более низких значений.
Природный газ открытого холодильного цикла расширяется в детандерном агрегате (Д-200), при этом его температура снижается. Работа, вырабатываемая на детандере, снимается компрессором первой ступени сжатия К-200. Далее природный газ холодильного цикла обратным потоком проходит через секции теплообменников Т -201 и Т -200, забирая при этом тепло у охлаждаемых потоков.
Природный газ на сжижение направляется в третью часть Т-202 основного теплообменника, где охлаждается до температуры минус 132 °С. Затем проходя через дроссель Др-200 давление потока снижается до давления хранения СПГ – 6 атм., при этом происходит переохлаждение жидкости до температуры минус 135 °С. Парожидкостная смесь разделяется в сепараторе Е-001: внизу сепаратора отводится СПГ из верха сепаратора отводится поток отпарного газа, который после подогрева используется в качестве топлива газопоршневыми приводами компрессоров К-201 и К-203.
Охлаждение природного газа обеспечивается за счет работы азотного холодильного цикла. Поток азота (контур показан синим цветом) сжимается сначала в компрессоре К-202, затем в компрессоре К-203. Тепло от сжатия снимается аппаратами воздушного охлаждения АВО-202 и АВО-203. Далее поток азота предварительно охлаждается в секциях теплообменника Т-200 и Т-201 и направляется на детандер Д-201, где расширяется, температура при этом снижается до минус 143 °С. Высвободившаяся при этом энергия обеспечивает работу компрессора К-202.
Далее поток азота проходит последовательно теплообменники Т-202, Т-201 и Т-200, забирая тепло у охлаждаемых потоков, и возвращается на рецикл.
Сравнение расчетных показателей работы описанной установки сжижения с показателями существующих производств (по данным [4] ) приведено в таблице 2.
Источник статьи: http://magazine.neftegaz.ru/articles/pererabotka/514086-tekhnologiya-polucheniya-malotonnazhnogo-spg-s-dvumya-konturami-okhlazhdeniya/