- Устройство современного автомобиля
- Датчики систем управления двигателем
- Что такое датчик, зачем он нужен, какую функцию выполняет?
- Принцип диагностики датчиковой аппаратуры
- Краткие итоги
- Особенности электрического подключения датчиков к цепям ЭСУД
- Разновидности датчиков. Принцип работы и методики проверки
- Датчики потенциометрического типа
Устройство современного автомобиля
Современные системы электронного автоматического управления различными всевозможными техническими объектами, а также автомобильными бортовыми устройствами, имеют почти одинаковую похожую структуру.
Принцип работы различных датчиков ЭСАУ примерно одинаковый, — преобразование информации о значениях, которые преобразовываются из неэлектрических параметров в электрический сигнал — напряжение, ток, частоту, фазу и т. д. Полученные сигналы перевоплощаются в цифровой код и поступают в специальный микроконтроллер.
Микроконтроллер на основании значений этих сигналов и в соответствии с заложенным в него программным обеспечением принимает решения, управляет через исполнительные механизмы (реле, соленоиды, электродвигатели) объектом.
Возможность совершенствования автомобильных электронных систем во многом зависит от наличия надежных, точных и недорогих датчиков.
В 60-х годах автомобили были оборудованы датчиками давления масла, уровня топлива, температуры, охлаждающей жидкости. Их выходы были подключены к стрелочным или ламповым индикаторам на щитке приборов.
В 70-х годах автомобильные компании начали бороться за уменьшение количества токсичных выбросов из глушителя автомобиля — потребовались дополнительные датчики для управления силовой установкой, которые необходимы для обеспечения нормальной работы электронного зажигания, системы впрыска топлива, трехкомпонентного нейтрализатора, для точного задания соотношения воздух/топливо в рабочей смеси, для минимизации токсичности выхлопных газов.
В 80-х годах начали уделять больше внимания безопасности водителя и пассажиров — появились антиблокировочная система торможения (ABS) и воздушные мешки безопасности.
В силовом агрегате (в ДВС) датчики используются для измерения температуры и давления большинства текучих сред (температура всасываемого воздуха, абсолютное давление во впускном коллекторе, давление масла, температура охлаждающей жидкости, давление топлива в системе впрыска).
Почти ко всем движущимся частям автомобиля подключены датчики скорости или положения (скорость автомобиля, положение дроссельной заслонки, положение коленчатого вала, положение распределительного вала, положение и скорость вращения вала в коробке переключения передач, положение клапана рециркуляции выхлопных газов).
Другие датчики определяют уровень детонации, нагрузку двигателя, пропуски воспламенения, содержание кислорода в выхлопных газах.
Есть датчики, которые определяют положение сидений.
В системе управления климатом (в климат-контроле) используются различные датчики в кондиционере для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом.
После появления антиблокировочной системы торможения и активной подвески потребовались датчики для определения скорости вращения колес, высоты кузова по отношению к шасси, давления в шинах.
Датчики удара и акселерометры нужны для правильного функционирования фронтальных и боковых воздушных мешков безопасности. Для переднего пассажирского сиденья с помощью датчиков определяют наличие пассажира, его вес. Эта информация используется для оптимального наддува мешка безопасности на переднем сиденье. Другие датчики используются для боковых и потолочных воздушных мешков безопасности, а также специальных воздушных мешков для защиты шеи и головы.
На современных автомобилях антиблокировочные системы торможения заменяются более сложными и эффективными системами управления стабильностью движения автомобиля. Возникает необходимость в новых датчиках. Разрабатываются и уже имеются датчики скорости вращения автомобиля вокруг вертикальной оси, датчики для предупреждения столкновений (например радарные), датчики для определения близости других автомобилей, датчики положения рулевого колеса, бокового ускорения, скорости вращения каждого колеса, крутящего момента на валу двигателя и т. д. Управление тормозной системой автомобиля становится частью более общей и эффективной системы электронного управления курсовой устойчивостью и стабильностью движения.
Из сказанного ясно, что сегодня датчики устанавливаются практически во всех системах автомобиля.
На рис. 2.1, а показано наиболее рациональное расположение различных датчиков на автомобиле.
► Датчики автомобильных электронных систем можно классифицировать по трем признакам: принципу действия, типу энергетического преобразования и основному назначению.
По принципу действия датчики подразделяют на электро контактные, потенциометры ческие, оптические, оптоэлектронные, электромагнитные, индуктивные, магниторезистивные, магнитострикционные, фото- и пьезоэлектрические, датчики на эффектах Холла, Доплера, Кармана, Зеебека, Вигоида.
В зависимости от энергетического преобразования (рис. 2.1, б) датчики (Д) бывают активными (поз. 2 на рис. 2.1, б), в которых выходной электрический сигнал (ЭС) возникает как следствие входного неэлектрического воздействия (НВ) без приложения сторонней электрической энергии за счет внутреннего физического эффекта (например фотоэффекта), и пассивными (поз. 3 на рис. 2.1, б), в которых электрический сигнал (ЭС) есть следствие модуляции внешней электрической энергии (ВЭ) управляющим неэлектрическим воздействием (НВ). Например, потенциометрический датчик, показанный па рис. 2.1, б (поз. 5), является пассивным преобразователем угла поворота оси потенциометра (чувствительного элемента ЧЭ) в электрический сигнал. Электрический сигнал (ЭС) появится на выходе потенциометра только после того, как на резистивную дорожку (П) будет подано внешнее напряжение (ВЭ). Следует отметить, что внутри датчика, посредством чувствительного элемента (ЧЭ), всегда имеет место внутреннее преобразование внешнего неэлектрического воздействия (НВ) в промежуточный неэлектрический сигнал (НС), что показано на рис. 2.1, б (поз. 1). Применительно к датчику угла поворота, угловое положение оси потенциометра является неэлектрическим сигналом (НС) на выходе чувствительного элемента. Этому неэлектрическому сигналу (НС) соответствует выходной электрический сигнал (ЭС) датчика, если поданное па резистивную дорожку (П) внешнее напряжение (ВЭ) постоянно (рис. 2.1, б, поз. 4). Линейная характеристика преобразования (рис. 2.1, б, поз. 6) может быть легко изменена на квадратичную, ступенчатую и любую нелинейную с заданной крутизной, что достигается подбором конструктивных размеров (длины, ширины, толщины) резистивной дорожки.
Рис. 2.1, а. Расположение датчиков на автомобиле
1 — датчик конфигурации впускного коллектора с управляемой геометрией, 2 — датчик тахометра, 3 — датчик положения распределительного вала, 4 — датчик нагрузки двигателя, 5 — датчик положения коленчатого вала, 6 — датчик крутящего момента двигателя, 7 — датчик количества масла, 8 — датчик температуры охлаждающей жидкости, 9 — датчик скорости автомобиля,10 — датчик давления масла, 11— датчик уровня охлаждающей жидкости, 12 — радарный датчик системы торможения, 13 — датчик атмосферного давления, 14 — радарный датчик системы предотвращения столкновений, 15 — датчик скорости вращения ведущего вала коробки передач, 16 — датчик выбранной передачи в коробке передач, 17 — датчик давления топлива в рампе форсунок, 18 — датчик скорости вращения руля, 19 — датчик положения педали, 20 — датчик скорости вращения автомобиля относительно вертикальной оси, 21 — датчик противоугонной системы, 22 — датчик положения сиденья, 23 — датчик ускорения при фронтальном столкновении, 24 — датчик ускорения при боковом столкновении, 25 — датчик давления топлива в баке, 26 — датчик уровня топлива в баке, 27 — датчик высоты кузова по отношению к шасси, 28 — датчик угла поворота руля, 29 — датчик дождя или тумана, 30 — датчик температуры забортного воздуха, 31 — датчик веса пассажира, 32 — датчик кислорода, 33 — датчик наличия пассажира в сиденье, 34 — датчик положения дроссельной заслонки, 35 — датчик пропусков воспламенения, 36 — датчик положения клапана рециркуляции выхлопных газов, 37— датчик абсолютного давления в впускном коллекторе, 38 — датчик азимута, 39 — датчик скорости вращения колес, 40 — датчик давления в шинах.
Из приведенного примера ясно, что любой датчик всегда состоит, как минимум, из двух частей — из чувствительного элемента (ЧЭ), способного воспринимать входное неэлектрическое воздействие (НВ), и из преобразователя (П) промежуточного неэлектрического сигнала (НС) от чувствительного элемента в выходной электрический сигнал (ЭС).
По назначению датчики классифицируются по типу управляющего неэлектрического воздействия: датчики краевых положений, датчики угловых и линейных перемещений, датчики частоты вращения и числа оборотов, датчики относительного или фиксированного положения, датчики механического воздействия, датчики давления, датчики температуры, датчики влажности, датчики концентрации кислорода, датчик радиации и др.
► Датчики подключаются к ЭБУ или средствам индикации для передачи информации о параметрах контролируемой среды. В автомобильных системах цепа и надежность имеют огромное значение и при прочих равных условиях всегда выбирают датчик с наименьшим числом соединителей. Если к датчику следует подключить 5—6 проводов (например, ЛДТ), целесообразно разместить микросхему обработки сигнала непосредственно на датчике и передавать данные контроллеру через последовательный интерфейс.
При подключении датчиков к ЭБУ следует иметь в виду, что шасси (масса) автомобиля не может быть использована в качестве измерительной земли. Между точкой подключения ЭБУ к массе и датчиком напряжение может падать до I В за счет токов силовых элементов по массе, что недопустимо как при штатной работе датчика, так и при его диагностике.
Подавляющее большинство датчиков из числа вышеперечисленных уже достаточно широко используется на современных импортных и отечественных автомобилях. Их устройство, работа и принципы диагностирования подробно описаны в [3] и [4|. Но есть и такие, которые появились относительно недавно и находятся на стадии внедрения в новейшие автомобильные системы. Описанию именно таких датчиков уделено наибольшее внимание в данной главе.
Источник статьи: http://www.autoezda.com/2010-10-25-07-38-46/705-dat4iks.html
Датчики систем управления двигателем
Датчиковая аппаратура – важная и неотъемлемая часть системы управления двигателем. Прежде чем начинать подробный разговор обо всем многообразии датчиков и методиках их диагностики, нужно ввести несколько фундаментальных понятий.
Что такое датчик, зачем он нужен, какую функцию выполняет?
Основным элементом системы управления двигателем является электронный блок управления (ЭБУ). Он способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т.п. Но параметры работы двигателя носят чисто физические характеристики. Чтобы сообщить их блоку управления, необходимо преобразовать физическую величину в величину электрическую, пригодную для обработки в блоке управления в соответствии с заложенной в него программой. Итак,
Датчик – это элемент системы управления двигателем, задача которого состоит в преобразовании физических величин, характеризующих работу двигателя, в электрические величины, пригодные для обработки электронным блоком управления.
Перечислим физические величины и явления, информация о которых необходима блоку управления:
- температура;
- давление;
- частота вращения;
- концентрация;
- количество воздуха;
- пространственное положение;
- вибрация.
Перечисленную совокупность датчики преобразуют в электрические параметры:
Принцип диагностики датчиковой аппаратуры
Диагностика любого датчика ЭСУД сводится к проверке адекватности преобразования физического параметра в электрический параметр.
Необходимо установить заведомо известное значение параметра на входе датчика и проконтролировать его выходной сигнал при помощи мотортестера или сканера.
Простой пример: датчик абсолютного давления во впускном коллекторе. В качестве эталона можно использовать атмосферное давление, которое будет присутствовать во впускном коллекторе заглушенного двигателя. Проконтролировав отображаемое датчиком в этом состоянии давление при помощи сканера, можно сделать вывод о достоверности его показаний.
Приведенный пример весьма примитивен, он призван лишь продемонстрировать общий принцип диагностики датчиковой аппаратуры. В обучающем курсе «Диагностика датчиковой аппаратуры» методики проверки каждого типа датчиков описаны очень подробно.
Предположим, есть некий датчик, подключенный к ЭБУ, и есть необходимость оценить его работоспособность (см. рисунок). Рассмотрим классическую схему подключения датчиков к блоку.
С блока управления на датчик подается питающее напряжение 5 В и масса. Сигнал с датчика поступает в блок и обрабатывается им.
Для проверки исправности датчиков применяются два основных диагностических прибора: сканер и мотортестер.
Подключив сканер, диагност получает возможность «увидеть» сигнал датчика «глазами» блока управления. Для того чтобы оценить выходной сигнал датчика при помощи мотортестера, необходимо подключить его щупы к цепи датчика, как показано на рисунке: один к массе, другой к сигнальному проводу.
Работа сканером более проста и удобна, но не следует забывать, что обмен информацией между ЭБУ и сканером происходит отнюдь не мгновенно, и какие-то интересные моменты сигнала можно попросту не обнаружить. Помимо этого, сканер невозможно использовать на достаточно старых автомобилях, примерно до середины девяностых годов, вследствие низкого уровня интеллекта и быстродействия тогдашних блоков управления.
Напротив, мотортестер позволяет оценить сигнал датчика очень качественно и подробно, не пропустив ни малейшей детали, хотя трудоемкость его применения выше, чем у сканера. Обратите внимание на то, что щупы мотортестера правильнее всего подключать непосредственно к разъему датчика. Особенно это касается щупа массы: не следует присоединять его к первой попавшейся точке массы двигателя.
Краткие итоги
Датчик представляет собой преобразователь физического параметра в параметр электрический, пригодный для обработки в ЭБУ. Физическими параметрами можно назвать температуру, давление, концентрацию, пространственное положение, количество воздуха, вибрацию. Электрические параметры, с которыми оперируют датчики, это напряжение, ток, частота. Проверку датчиков можно выполнить двумя приборами: сканером, подключив его к ЭБУ, и мотортестером, подключив его щупы непосредственно к сигнальному и массовому выводам датчика.
Особенности электрического подключения датчиков к цепям ЭСУД
Каким образом датчики подключаются к блоку управления?
Схема подключения датчиков представляет собой очень важный момент. Обратимся к рисунку.
Существует так называемая «масса», или общий провод электропроводки автомобиля. Она объединяет металлические части кузова и двигателя и подключается к минусовой клемме аккумулятора. Большинству датчиков требуется подключение к массе в силу особенностей их работы. ЭБУ также подключается к массе, на рисунке это точка 1.
Рассмотрим, каким образом подключается масса датчиков. На первый взгляд, массу можно подключить к датчику в любой ближайшей точке двигателя или кузова (точка 2), а сигнальный вывод датчика подключить к одному из контактов в разъеме блока. Посмотрим на полученную схему критически.
Что получается?
А получается, что цепь датчика включает в себя участок кузова или двигателя автомобиля между точками 2 и 1. Одновременно с этим по кузову идут токи мощных нагрузок вроде ламп головного света, вентиляторов, электродвигателей стеклоочистителя и т.п. Получается, что по одному и тому же пути идут слабые токи датчика, содержащие полезную информацию, и большие токи мощных нагрузок. В итоге в цепи датчика возникают сильные помехи от электроприборов автомобиля и системы зажигания.
Такая ситуация совершенно недопустима, и подобное подключение массы датчиков (за редчайшим исключением) нигде не используется.
Куда же подключается масса датчиков? Она подключается непосредственно к блоку управления.
В такой ситуации цепь датчика оказывается не привязанной к цепи протекания токов нагрузок и сигнал датчика без помех и искажений поступает в ЭБУ. Сам блок, конечно же, подключен к массе автомобиля. Внутренняя структура ЭБУ, его характерные дефекты и методики ремонта изложены в обучающем курсе «Ремонт электронных блоков управления».
Если открыть любую базу данных и посмотреть назначение выводов ЭБУ, то можно увидеть назначение выводов вроде «Масса датчика положения дроссельной заслонки», «Масса датчика абсолютного давления» и т.п. Отдельным выводом выполнена «Масса электронного блока управления». Вот это и есть точка подключения массы ЭБУ, а массы всех датчиков подключаются к ЭБУ отдельно, внутри него они соединяются вместе и подключаются к массе блока.
Убедиться в сказанном достаточно просто с помощью тестера: достаточно прозвонить цепь массы любого датчика на минусовую клемму аккумулятора, а затем, сняв разъем с ЭБУ, убедиться, что цепь разорвалась.
В качестве примера приведем часть схемы ЭСУД с блоком управления MR-140.
Несложно убедиться в том, что массы датчика температуры охлаждающей жидкости (Engine Coolant Temperature, ECT Sensor), датчика положения дроссельной заслонки (Throttle Position, TP Sensor), датчика температуры воздуха (Intake Air Temperature, IAT Sensor) объединены сборкой S101 и подключены к выводу М64 блока управления, обозначенному как вывод массы. В эту же точку подключены выводы массы и экранирующей оплетки датчика детонации (Knock Sensor). Массы датчиков давления в системе кондиционирования воздуха (Air Condition Pressure, ACP Sensor) и датчика неровной дороги (Rough Road Sensor) также объединены и подключены к выводу К34 электронного блока.
Есть два исключения из этого правила: резонансный датчик детонации конструкции GM, который применялся на первых системах управления ВАЗ, и однопроводной датчик концентрации кислорода. Но это исключения, а отнюдь не правило.
К сожалению, многолетняя практика диагностики двигателей дает право констатировать, что вышеизложенные факты понимают далеко не все специалисты автосервиса.
Приходилось видеть двигатели, в электропроводку которых было произведено вмешательство с целью создать более надежный контакт массы датчика расхода воздуха. При этом провод массы подсоединялся непосредственно к выводу датчика и к минусовой клемме аккумулятора. Такое решение совершенно недопустимо. Оно приводит к значительному повышению уровня помех в цепи датчика вследствие образования контура и даже может при определенных обстоятельствах вызвать выход ЭБУ из строя. Никакое изменение схемы подключения датчиков, никакое привнесение лишних проводов в ЭСУД недопустимо.
Существуют датчики, информацию с которых необходимо донести до ЭБУ максимально качественно, без помех. Примером может служить датчик положения коленчатого вала. В таком случае провода от датчика до ЭБУ заключают в экран, представляющий собой гибкую оплетку из алюминиевой фольги либо тонкого провода. Назначение экрана – защита цепи датчика от внешних электромагнитных помех. Сам экран также подключается к массовому проводу системы и обозначается на электрической схеме в виде пунктирного контура вокруг проводов. Примером такого подключения служит датчик детонации на рисунке выше.
Разновидности датчиков. Принцип работы и методики проверки
Если изучать датчиковую аппаратуру, опираясь на существующие руководства по ремонту той или иной марки автомобилей, то можно обнаружить, что в каждом руководстве используется один и тот же подход. Перечисляются датчики, входящие в состав описываемой системы управления, и озвучивается их назначение. Для другого двигателя и другой системы опять-таки перечисляются датчики и т.д.
В некоторых книгах датчики ЭСУД и контрольные датчики, необходимые, например, для работы панели приборов (датчик давления масла, уровня охлаждающей жидкости и т.п.) вообще свалены в одну кучу. Такой подход представляется неконструктивным и не отображающим истинной картины.
Рассматривая датчиковую аппаратуру, мы будем применять другой метод подачи информации. Все датчики будут рассматриваться не по признаку наличия их на той или иной ЭСУД, а по принципу действия, по физическому явлению, лежащему в основе их функционирования.
Такой подход видится гораздо более правильным и доступным для понимания. Датчики одного и того же принципа действия используются в абсолютно разных узлах автомобиля, и для диагноста, усвоившего принцип их работы и методику диагностики, не составит труда проверить работоспособность любого из них.
Например, датчик уровня топлива, датчик расхода воздуха флюгерного типа, датчик положения клапана рециркуляции отработанных газов и датчик положения педали акселератора, несмотря на кажущуюся несхожесть, диагностируются абсолютно одинаково, по одному и тому же принципу.
Поэтому будем рассматривать не наборы датчиков для той или иной системы управления, а их типы, исходя из физического принципа функционирования. Для примера разберем датчики потенциометрического типа.
Датчики потенциометрического типа
Это один из самых несложных в понимании принципов действия и диагностики типов датчиков.
Что такое потенциометр?
Его смысл зашифрован в самом названии: это измеритель электрического потенциала. В электрических схемах потенциометр обозначается следующим образом: стандартное обозначение резистора, но со стрелкой, символизирующий подвижный контакт.
Если на верхний вывод потенциометра подать напряжение, скажем, 12 В, а нижний соединить с массой, то при перемещении полозка потенциометра напряжение между массой и сигнальным выводом будет изменяться от нуля до 12 В. Это в идеальном случае, в реальности же напряжение не будет доходить до нуля и до 12 В. Конструктивно датчик представляет собой резистивную дорожку в форме дуги или подковы, по которой перемещается ползунок. Один конец резистивной дорожки подключается к массе, на другой подается питающее напряжение. С ползунка снимается выходной сигнал.
Такой потенциометр использовался когда-то давно на радиоэлектронной аппаратуре для регулировки громкости звука: на него подавалось напряжение звуковой частоты, а с полозка оно снималось и шло на усилитель. В итоге, вращая ручку регулятора, можно было установить желаемый уровень громкости.
Где такой датчик можно применять в автомобиле?
Совершенно очевидно, его можно использовать там, где необходимо измерить пространственное положение какого-либо узла. Не важно, какого именно. Если узел подвижный, если он перемещается и занимает различные положения, а нам необходимо это положение определить, то практически повсеместно для этого используются датчики потенциометрического типа.
Классический пример датчика положения – указатель уровня топлива в баке. Поплавок с рычагом, установленный на шарнир и имеющий возможность перемещаться в одной плоскости. Рычаг соединен с полозком потенциометрического датчика. Напряжение с полозка подается на панель приборов и отклоняет стрелку указателя. Нужно отметить, что такая схема работы указателя уровня топлива уже весьма устарела и на большинстве современных автомобилей, оснащенных электронной панелью приборов, не применяется.
Где датчики такого типа используются на двигателе? Перечислим основные области применения:
- датчик положения дроссельной заслонки (ДПДЗ);
- датчик положения педали акселератора (ДППА);
- датчик положения клапана рециркуляции отработанных газов;
- датчик объемного расхода воздуха флюгерного типа;
- датчик положения заслонок впускного коллектора.
Перечислено далеко не все. Одним словом, везде, где нужно иметь информацию о пространственном положении узла, применяются датчики потенциометрического типа.
Методы диагностики таких датчиков рассмотрим на примере датчика положения дроссельной заслонки. Он устанавливается на дроссельном узле и преобразует в напряжение текущее положение дроссельной заслонки. На датчик подается напряжение 5 В с ЭБУ, но конструктивно датчик выполнен таким образом, что напряжение на нем никогда не будет равно 0 или 5 В. Это сделано для того, чтобы ЭБУ мог контролировать цепь датчика и различать нулевое положение и короткое замыкание сигнальной цепи на массу либо напротив, положение максимального открытия дросселя и замыкание на питающее напряжение 5 В. Поэтому в реальности напряжение на датчике изменяется не от 0 до 5 В, а от 0.3..0.5 В до 4.5..4.7 В.
Проверить работоспособность датчика можно двумя способами:
- Сканером. Для выполнения проверки нужно подключить сканер, войти в режим «Поток данных» и найти в списке напряжение на датчике. Затем, медленно поворачивая дроссельную заслонку от закрытого до полностью открытого состояния, контролировать численное значение напряжения. Оно должно нарастать плавно, без падений до нуля или бросков до максимального значения. Как вариант, можно оценивать не напряжение, а рассчитанное блоком положение заслонки в процентах. Опять-таки, количество процентов должно расти плавно, без хаотических появлений 0% и 100%. Следует отметить, что вследствие конечной скорости обмена между ЭБУ и сканером при такой методике проверки возможен пропуск дефектного места на резистивной дорожке датчика.
- Мотортестером. Измерение выполняется в режиме самописца. Щупы мотортестера необходимо подключить к массе и сигнальному выводу датчика. Включить зажигание. Плавно перемещая дроссельную заслонку, наблюдать за осциллограммой. Проверка мотортестером является наиболее достоверной, позволяет обнаружить малейшие нарушения резистивного слоя, и для полноценной диагностики датчика необходимо отдавать предпочтение именно ей.
Рассмотрим несколько примеров осциллограмм исправных и неисправных датчиков потенциометрического типа.
Осциллограмма исправного датчика. Напряжение нарастает плавно, без скачков и провалов.
Датчик неисправен. Имеется износ резистивного слоя, приводящий к небольшим скачкам напряжения.
Сильный износ резистивного слоя. Броски напряжения достигают максимально возможного.
Рассказать о диагностике всех типов датчиков в рамках одной статьи невозможно. Все тонкости и нюансы диагностики датчиков термоанемометрического, терморезистивного, пьезоэлектрического и других подробно рассмотрены в обучающем курсе «Диагностика датчиковой аппаратуры»
Источник статьи: http://pakhomov-school.ru/articles/diagnostika/datchiki-sistem-upravleniya-dvigatelem/