Светодиодный драйвер для автомобильного светового оборудования
В настоящее время, в связи со стремлением владельцев старых автомобилей перевести световое оборудование с ламп накаливания на светодиоды, достаточно востребованными являются конструкции бюджетных драйверов для светодиодов различной мощности. Ключевым словом является «бюджетных», т.к. конструкций драйверов, выполненных на различных микросхемах, в Поднебесной выпускается видимо-невидимо. И в то же время, практически всем из них свойственны существенные недостатки, требующие квалифицированного вмешательства при их установке и подключении к ним светодиодов.
Обусловлено это тем, что светодиоды, в отличие от ламп накаливания, для своей работы требуют стабильного тока. Напряжение, падающее на светодиодах, является вторичным, справочным параметром, нужным только для подбора диапазона выходных напряжений соответствующего драйвера. Для стабилизации тока требуется его датчик, самым дешевым из которых является обычный резистивный токоизмерительный шунт (RS на Рис. 1), включаемый, как правило, между катодом светодиода и минусовой шиной питания драйвера.
Рис. 1 Схема обычного подключения светодиодов к неинвертирующему драйверу
В результате светодиод оказывается запитанным «плавающим» напряжением, не связанным непосредственно ни с плюсовой шиной питания, ни с корпусом автомобиля (являющимся минусовой шиной). А это вынуждает устанавливать драйвер в непосредственной близости от светодиодов, в наименее защищенном от влаги месте. Существуют, конечно, датчики тока плюсовой шины (например, MAX4080, MAX4081, LT494, LT1637, LT1672, LT1784, LTC2053, LTC6800, INA337 и т.п.) [1, 2]. Но вот их дефицитность и стоимость.
Кроме того, большинство драйверов имеют конфигурацию либо понижающего, либо повышающего импульсного преобразователя [3]. Для первых недопустимо, чтобы падение напряжения на нагрузке превысило минимальное питающее напряжение и наоборот для вторых.
Однако, наиболее про́клятым сочетанием является случай, когда падение напряжения на светодиодах находится в диапазоне колебаний питающего напряжения. Скажем, падение напряжения на кластере из четырех соединенных последовательно белых светодиодов с падением напряжения на каждом из них 3…3,3 В, составляет 12…13,2 В, что практически равно напряжению кислотного аккумулятора. В этом случае начинаются «танцы с бубном» с использованием конфигураций SEPIC либо Step Up-Down. Вызывает недоумение зашоренность конструкторов, напрочь выпускающих из виду такую конфигурацию, как инвертирующий преобразователь, способный обеспечить выходное напряжение независимо от значения входного. Нельзя исключить, что сдерживающим фактором может быть низкий КПД такой конфигурации, составляющий всего 60…70%.
Еще раз внимательно рассмотрим Рис. 1. Источник питающего напряжения является двухполюсником. Потребитель (светодиоды) также являются двухполюсником. В таком случае, какая принципиальная разница, как подключать друг к другу два двухполюсника. Лишь бы соблюсти правильную полярность протекания тока через светодиоды да обеспечить необходимое значение этого тока (рис. 2)!
Рис. 2 Схема подключения светодиодов к инвертирующему драйверу
При такой конфигурации драйвер инвертирует выходное напряжение относительно входного, запитывая светодиоды током отрицательной полярности. При этом анод светодиода(ов) непосредственно соединяется с массой автомобиля, а токоизмерительный шунт (RS) продолжает оставаться включенным в отрицательное плечо.
Как же такой «изврат» реализовать практически? Да еще и с использованием самых дешевых и широко распространенных компонентов. Возьмем за основу микросхему импульсного преобразователя напряжения на MC34063, стоимость которого составляет менее $0.20 (а в SMD корпусе — еще дешевле). А если поискать, то ее вообще можно выпаять бесплатно из устаревшей аппаратуры. Например, модемов, свичей, даже некоторых старых материнских плат.
Рассмотрим конфигурацию инвертирующего преобразователя (схема из даташита), сразу же умощненного внешним p-n-p транзистором, дабы не зависеть от максимально допустимого пикового тока внутреннего ключа микросхемы, составляющего всего 1,5 А (рис. 3).
Рис. 3 Базовая инвертирующая (Voltage Inverting) конфигурация импульсного преобразователя на основе микросхемы MC34063
Принцип стабилизации выходного напряжения в данной схеме основан на поддержании потенциала 5-го вывода величиной +1,25 В относительно 4-го вывода. В то же время 4, 3 и 2 выводы подключены к наиболее минусовой (выходной) шине, поскольку используются внутренние узлы самой микросхемы. Подключение этих выводов к наиболее минусовому потенциалу является важнейшим требованием, т.к. обусловлено допустимыми значениями на p-n переходах внутримикросхемных транзисторов. В то же время, это существенно ограничивает максимально возможное значение отрицательного выходного напряжения, которое в сумме со входным не должно превышать максимально допустимого значения.
Но нам-то требуется стабилизировать ток! Причем, относительно общей шины. Причем, для цепочек светодиодов, составляющих светящиеся кластеры.
Для решения поставленной цели нужно решить две взаимосвязанных задачи:
- отделить выходное напряжение отрицательной полярности от питающего напряжения положительной полярности, чтобы не быть завязанным на максимальное напряжение питания микросхемы, которое для инвертирующей конфигурации равно сумме их абсолютных значений и не должно превышать 40 В;
- обеспечить инверсию напряжения измерительного сигнала от отрицательной полярности к положительной.
Поэтому без дополнительных компонентов (усилителя падения напряжения на токовом шунте) обойтись не удастся. Используем такой же дешевый (менее $0.10 в SMD корпусе) операционный усилитель LM358. И, опять же, его можно найти забесплатно в старой аппаратуре. С его применением эти задачи решаются следующим образом (Рис. 4):
Рис. 4 Принципиальная схема инвертирующего преобразователя со стабилизацией тока
Преобразователь на DA1 и внешнем транзисторе VT1 «молотит», в первом приближении не учитывая полярности и стабильности выходного напряжения. Об этом «заботится» каскад на ОУ DA2. Он построен на известном источнике тока для заземленной нагрузки на двух ОУ (Рис. 5) [5, 6]. Микросхема DA2 запитана по минусу от выходного отрицательного напряжения, формируемого преобразователем, а по плюсу — от положительного напряжения питания микросхемы DA1.
Рис. 5 Источник тока с заземлённой нагрузкой, не требующий плавающего источника питания
Фактически, схема состоит из двух источников тока. Первый на ОУ DA2.1 преобразует опорное напряжение на токоизмерительном шунте R1 в ток, создающий на резисторе R5 падение напряжения, пропорциональное току через светодиод (их цепочку) HL1. Поскольку ОУ LM358 способен работать с сигналами на уровне минусовой шины питания и даже минусовее ее на 0,4 В, то сопротивление токоизмерительного шунта R1 выбрано всего 0,1 Ома, что при токе через светодиод 0,9 А создает падение напряжения всего 0,09 В. С этим напряжением сравнивается падение напряжения на эмиттерном резисторе R6, которое, при его номинале 91 Ом, формирует ток, равный 1 мА. Этот ток создает на резисторе R5 (играющим такую же роль, как и R1) падение напряжения 2 В, поскольку по плюсовой шине ОУ не способен работать с уровнями сигналов, приближающимися к положительному питанию менее, чем на 1,5 В как по входу, так и по выходу.
Второй ОУ на DA2.2 формирует вытекающий ток, создающий на заземленном резисторе, подключенном между общей шиной и 5-м выводом микросхемы DA1 падение напряжения, равное +1,25 В при условии соответствия тока через токоизмерительный шунт R1 = 0,9 А. Регулировка этого тока под нужное значение осуществляется подстроечным резистором R8.
Стабилитрон ZD1 является защитным, предотвращающим чрезмерное повышение напряжения питания DA2 более 32 В при обрыве светодиода (их цепочки) и в штатном режиме не влияет на роботу схемы.
Недостатком этой схемы является ограниченный диапазон выходного отрицательного напряжения, которое вместе с бортовым напряжением питания не должно превышать максимально допустимого для ОУ DA2 32 В. Если принять напряжение питания (со всякими выбросами), равным 15…16 В, то на светодиоды остается всего те же 15…16 В, что соответствует цепочке из всего 4-х белых светодиодов. Красные можно подключить и цепочкой из 6 шт., но, во-первых, они более редкие, а значит и более дорогие, а во-вторых, их светоотдача более, чем в 2 раза ниже, чем у белых.
Для обхода этой проблемы вместо ОУ DA2.2 можно применить токовое зеркало (отражатель тока) на двух транзисторах (рис. 6). Тем более, что такой уж супер-пупер стабильности вытекающего тока для светодиодов совершенно не требуется. На глаз разница в яркости будет практически незаметной. Т.о., из двух ОУ нам нужен только один. НО! Стоимость одиночного ОУ с параметрами, близкими к параметрам LM358 (например, LM321), в 5…6 раз больше стоимости LM358, особенно в корпусе SO8. Парадокс — но факт. Проще и дешевле «заглушить» один из ОУ в корпусе (лучше с выводами 1, 2, 3), чем гоняться за экзотикой и переплачивать за нее. Питание микросхемы DA2.2 теперь осуществляется выходным отрицательным напряжением преобразователя и нулем входного напряжения, что позволяет запитать цепочку светодиодов суммарным напряжением до 32 В (9 светодиодов с падением напряжения до 3,3 В на каждом в виде кластера 3х3).
Рис. 6 Принципиальная схема инвертирующего преобразователя со стабилизацией тока и повышенным падением напряжения на нагрузке
Подстроечным резистором R5 регулируется коэффициент соответствия между входным и выходным токами. Защиты в данной схеме пока нет, это дело будущего.
Что делать, если и 32 В мало? Лёгко! Запитать ОУ DA2 по нулевой шине через примитивный стабилизатор напряжения на транзисторе (VT5), стабилитроне и резисторе. Трехвыводный стабилизатор 7924 применить, в принципе, тоже можно, но он также ограничен по значению максимального входного напряжения. Тем более, что особой стабильности питающего напряжения для ОУ не требуется.
В качестве ключевого транзистора VT1 вполне можно применить P-канальный полевой транзистор (опционально — с драйвером разрядного тока на биполярном транзисторе). Кроме того, подстройку +1,25 на входе компаратора ОС можно осуществлять изменением номинала сопротивления R5. Вариант схемы с указанными изменениями и дополнениями представлен на Рис. 7.
Рис. 7 Принципиальная схема высоковольтного инвертирующего преобразователя со стабилизацией тока
Поскольку за счет применения внешнего ключевого транзистора входы самой микросхемы DA1 никаким образом с выходным отрицательным напряжением не связаны, снимается ограничение на значение формируемого отрицательного напряжения.
Драйвер по Рис. 6 был установлен для питания светодиодных ДХО на Жигули-«зубило» зятя. К сожалению, фото не сохранилось, а зять с дочкой развелся…
Но его КПД был измерен и оказался равным 84%!
Источник статьи: http://cxem.net/avto/electronics/4-172.php
Что такое драйвер и для чего он нужен светодиодам
Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.
Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .
Назначение.
Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.
Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.
Принцип работы.
Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.
В простейшем и самом дешевом случае просто ставят ограничительный резистор.
Питание диода через ограничивающий резистор.
Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.
Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:
Пример.Импульсная стабилизация (упрощенно)
При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.
Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.
Характеристики драйверов, их отличия от блоков питания LED ленты.
Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.
Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.
Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.
Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.
При выборе драйвера нужно учесть:
Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.
Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.
Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.
Сила тока через линейку будет рассчитываться по аналогичной формуле.
Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.
Схема простого led-драйвера без гальванической развязки.
Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.
Как выбрать драйвер для светодиодов.
От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.
В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.
Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.
Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.
Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.
На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:
- класс защищенности от пыли и жидкости,
- мощность,
- номинальный стабилизированный ток,
- рабочее входное напряжение,
- диапазон выходного напряжения.
Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.
Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.
Источник статьи: http://vamfaza.ru/draiver-led/