- Угловая скорость вращения вала автомобильного двигателя
- Формула определения требуемой мощности электродвигателя
- Угловая скорость электродвигателя
- Определение частоты вращения валов привода
- Определение угловой скорости вращения валов привода
- Определение мощности на валах привода
- Находим вращающие моменты на валах привода
- Угловая скорость двигателя
- График мощности и крутящего момента
- График мощности и крутящего момента — о чем он говорит?
- Почему это важно?
- Что это означает на практике?
- Зачем измерять мощность и крутящий момент?
Угловая скорость вращения вала автомобильного двигателя
Оборо́т в мину́ту (обозначение об/мин, 1/мин, мин −1 , также часто используется английское обозначение rpm [ revolutions per minute ]) — единица измерения частоты вращения: количество полных оборотов, совершенных вокруг фиксированной оси. Используется для измерения скорости вращения механических компонентов.
Также используется единица оборот в секунду (символ об/с или с −1 ). Обороты в минуту конвертируются в обороты в секунду делением на 60. Обратное преобразование: обороты в секунду умножаются на 60 для перевода в обороты в минуту.
1 об/мин = 1/мин = 1/(60с) = 1/60 об/с ≈ 0,01667 об/с
Ещё одна физическая величина связана с данным понятием: угловая скорость; в системе СИ она измеряется в радианах в секунду (символ рад·с −1 или рад/с):
1 об/мин = 2π рад·мин −1 = 2π/60 рад·с −1 = 0,1047 рад·с −1 ≈ 1/10 рад·с −1
Редуктор двухступенчатый, несоосный
Кинематическая схема редуктора:
1. Мощность на выходном валу Рвых=7,0 кВт
2. Частота вращения выходного вала nвых=46 об/мин
3. Передаточное число привода U=21.4
Формула определения требуемой мощности электродвигателя
Формула определения требуемой мощности электродвигателя:
где: Р — требуемая мощность электродвигателя, кВт
общий КПД привода
— КПД муфты соединительной;
— КПД быстроходной ступени редуктора;
— КПД тихоходной ступени редуктора;
— КПД подшипников качения (одна пара);
По каталогу выбираем асинхронный короткозамкнутый двигатель мощностью Рэд Р. Тип электродвигателя: 4А по ГОСТ19523-81, с номинальной частотой вращения об/мин, об/мин, мощностью Рном = 11 кВт и мм.
Угловая скорость электродвигателя
Угловую скорость электродвигателя определяем по формуле:
номинальная угловая скорость вала электродвигателя, с-1;
nэд — номинальная частота вращения вала электродвигателя, об/мин;
Уточним общее передаточное число привода Up:
Определяем передаточные числа ступеней привода:
передаточное число быстроходной ступени;
передаточное число цилиндрической передачи;
Определим частоты вращений и угловые скорости валов
об/мин частота вращения быстроходного вала
об/мин частота вращения промежуточного вала
об/мин частота вращения тихоходного вала
Угловая скорость на быстроходном валу:
Угловая скорость на промежуточном валу:
Угловая скорость на тихоходном валу:
Определим мощности на валах
реальная мощность вала двигателя
мощность быстроходного вала
мощность промежуточного вала
мощность тихоходного вала
Вращающий момент на быстроходном валу:
Вращающий момент на промежуточном валу Т2:
Вращающий момент на тихоходном валу Т3:
Основные механические характеристики выбранных материалов зубчатых колес приведены в таблице 1
Действительное общее передаточное число привода
Уточняем значения передаточных чисел редуктора и цепной передачи.
Оставляем принятые ранее значения
Действительное передаточное отношение редуктора
Уточняем передаточное число цепной передачи
Определение частоты вращения валов привода
Определяем частоты вращений валов:
После получения расчетной частоты вращения приводного вала находим погрешность расчета по формуле
Определение угловой скорости вращения валов привода
Определяем угловые скорости каждого вала по формуле
Определение мощности на валах привода
Находим мощности на валах привода:
Находим вращающие моменты на валах привода
Проверка точности расчета значения вращающего момента
Из каталога диаметр вала электродвигателя dв1= 38 мм.
Поскольку II вал соединяется муфтой, диаметр его входного конца назначаем равным dв1, то есть dв2=dв1=38 мм.
Диаметры остальных валов находим по формуле
-пониженное допускаемое напряжение кручения. Принимая
мм, принимаем 35 мм;
мм; принимаем за 62 мм;
мм, принимаем 88 мм;
Результаты расчетов заносим в таблицу П.1.
Результаты энергокинематического расчета привода
Источник статьи: http://kalina-2.ru/remont-vaz/uglovaja-skorost-vrashhenija-vala-avtomobilnogo
Угловая скорость двигателя
1.7. Угловая скорость двигателя
, (1.7)
где угловая скорость двигателя, рад/с;
nдв – номинальная частота вращения.
=74 рад/с
1.8. Значение частных передаточных отношений
Для клиноременной передачи iр.п=2÷4; iр=3÷6;
Проверка общего передаточного отношения
,
где i – передаточное отношение;
— угловая скорость, рад/с;
— угловая скорость барабана, рад/с.
=6,4
Принимаю i=8; ир=3,55; ирп=2,24
1.9. Частота вращения и угловые скорости валов редуктора, и приводного барабана по кинетической схеме
Для вала двигателя (он же ведущий вал клиноременной передачи)
,
Для быстроходного вала редуктора (вал шестерня, он же ведомый вал клиноременной передачи)
где n2 – частота вращения быстроходного вала редуктора, об/мин;
nдв – номинальная частота вращения двигателя, об/мин;
ир.п – передаточное число ременной передачи.
n2 =719,25/2,24=321 об/мин
, (1.12)
где — угловая скорость быстроходного вала редуктора, рад/с.
=33 рад/с
Для тихоходного вала редуктора (колесо)
где n3 — частота вращения колеса об/мин.
n3= 321/3,55=90,5 об/мин
, (1.14)
где — угловая скорость колеса, рад/с;
=9,3 рад/с
Для ленточного конвейера (барабан)
.
1.10. Вращающие моменты на валах привода
Вращающий момент на валу двигателя (он же ведущий вал клиноременной передачи)
, (1.15)
где Тдв – вращающий момент на ведущем валу, Н·м;
Ртр – требуемая мощность электродвигателя;
— угловая скорость, рад/с.
=50,67 Н·м
Вращающий момент на быстроходном валу редуктора (он же ведомый вал клиноременной передачи)
Т1=Тдв·Ир.п·, (1.16)
где Т1- вращающий момент на ведомом валу, Н·м;
Ир.п – передаточное число клиноременной передачи;
— КПД ременной передачи с учетом потерь в подшипниках.
Т1= 50,67·2,24·0,97·0,99=108,9 Н·м
Вращающий момент на тихоходном валу редуктора
Т2= Т1·Ир.·, (1.17)
где Т2 – вращающий момент тихоходного вала редуктора, Н·м;
Т1 – вращающий момент быстроходного вала редуктора, Н·м;
Ир. – передаточное число редуктора;
— КПД зубчатой передачи с учетом потерь в подшипниках.
Т2= 108,9·3,55·0,96·0,99=367,42 Н·м
Для вала барабана ленточного конвейера
Т3= Т2 · , (1.18)
где Т3 – вращающий момент ленточного конвейера, Н·м;
Т2 – вращающий момент тихоходного вала редуктора, Н·м;
— коэффициент потерь в муфте.
Т3= 367,42·0,98=360 Н·м
2. Расчет клиноременной передачи привода
Из кинематического и силового расчета выписываем данные для расчета
где Т1 – вращающий момент ведущего вала клиноременной передачи
2.1. Выбор сечения ремня по номограмме по и nдв=n-s
Выбираю ремень сечения Б
2.2. Диаметр меньшего шкива
, (2.1)
где d1 – диаметр меньшего шкива, мм;
Т1 – вращающий момент ведущего вала клиноременной передачи Н·м.
=124÷179 мм
Источник статьи: http://www.kazedu.kz/referat/137408/1
График мощности и крутящего момента
На написание данной статьи подвигла частая путаница между такими понятиями как мощность и крутящий момент.
График мощности и крутящего момента — о чем он говорит?
Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.
Где
- ω — угловая скорость вращения вала
- M — крутящий момент
- π — число
3.1416
Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.
КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.
ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.
Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.
Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»
Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.
Почему это важно?
При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.
Что это означает на практике?
Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!
При движении в горку двигатель выдает большую мощность при тех же оборотах.
(при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.
Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.
А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.
Зачем измерять мощность и крутящий момент?
Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.
Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.
В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.
Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.
Источник статьи: http://www.prom-tex.org/solutions/izmerenie-krutyashchego-momenta/grafik-moshchnosti-i-krutyashchego-momenta/