- Система пуска двигателя
- Устройство и работа системы пуска двигателя
- 1. Устройство системы пуска двигателя
- Схема системы пуска двигателя :
- Система привода системы пуска двигателя
- 2. Электромагнитный включатель
- Устройство и принцип работы системы запуска двигателя
- Что представляет собой
- Система пуска автомобиля назначение и технические требования
- Устройство системы запуска двигателя
- Как работает запуск двигателя
- Советы и рекомендации
- Особенности работы аккумуляторной батареи
- Заводские характеристики АКБ, которые влияют на ее работу
- Сила тока при старте
- Какой блок автозапуска выбрать
- Особенности запуска двигателя в зимних условиях
- Как устанавливают блок автозапуска на автомобиль
- Система выпуска отработавших газов
- Принцип работы оборудования автозапуска
- От чего зависит мощность АКБ, и как на это влияет пусковой ток?
Система пуска двигателя
- Устройство системы пуска двигателя
- Работа системы пуска двигателя
- Диагностика системы пуска двигателя
Двигатель не может запуститься сам. Чтобы завести его нужно приложить внешние усилия и повернуть коленчатый вал. В этой статье мы рассмотрим систему пуска, которая запускает двигатель.
Устройство и работа системы пуска двигателя
На двигателе имеется маховик. Обод маховика снабжен зубьями и превращен в зубчатый венец. Установленная на электромоторе стартера приводная шестерня входит с ним в зацепление и вращает коленчатый вал , инициируя рабочий цикл двигателя. Ра c смотрим , как это происходит :
Работа системы пуска двигателя с редуктором
Существует три типа систем пуска :
- Система пуска двигателя с редуктором ;
- Система пуска двигателя с планетарным механизмом ;
- Система пуска обычного типа.
Рассмотрим конструкцию, работу и проверку системы пуска двигателя обычного типа.
1. Устройство системы пуска двигателя
В обычной системе пуска двигателя можно выделить три основных механизма :
- Электромотор – создает вращающий момент.
- Система привода – передает вращение на двигатель.
- Электромагнитный включатель – приводит ведущую шестерню стартера в зацепление с ободом маховика, а также дает электрический ток в электромотор.
Рассмотрим электромотор системы пуска, создающий вращающий момент. Корпус электромотора выполнен из стали и имеет внешний вид цилиндра. Внутри корпуса имеются обмотки возбуждения, намотанные вокруг сердечников, прикрепленных к корпусу. Эти обмотки выполнены из толстой токопроводящей проволоки, способной выдержать сильный электрический ток. Обмотки генерируют электромагнитное поле, способное вращать якорь стартера . Одним из элементов якоря является сердечник, с канавками вдоль которого располагаются витки обмоток якоря. Оба конца каждой обмотки подключены к коллектору. Вращающие моменты, создаваемые каждой из обмоток, складываются, чтобы можно было вращать якорь, точнее вал якоря. Если посмотреть на стартер со стороны коллектора, то на якоре видно щеткодержатель.
|
|
Рассмотрим, как устроен щеткодержатель : в щеткодержателе объединены 4 щетки, прижимаемые к коллектору. Две из четырех щеток находятся в изолированных оправках и соединены с обмотками якоря и далее через коллектор с обмотками возбуждения. Те и другие заземлены на корпус.
Схема системы пуска двигателя :
1. Коллектор; 2 –задняя крышка;3 – корпус статора;4 – тяговое реле;5 – якорь реле;6 – крышка со стороны привода;7 – рычаг;8 – кронштейн рычага;9 – уплотнительная прокладка;10 – планетарная шестерня;11 – шестерня привода;12 – вкладыш крышки;13 – ограничительное кольцо;14 – вал привода;15 – обгонная муфта;16 – поводковое кольцо;17 – опоры вала привода с вкладышем;18 – шестерня с внутренним зацеплением;19 — водило;20 – центральная шестерня;21 – опора вала якоря;22 – постоянный магнит;23 — якорь;24 — щеткодержатель;25 – щетка.
Система привода системы пуска двигателя
Этот механизм передает вращающий момент от электромотора к маховику. На валу якоря установлена шестерня привода. Действие электромагнитного включателя заставляет рычаг привода перевести шестерню привода в зацепление с зубчатым ободом маховика (в этом положение вращение передается на вал двигателя). Когда двигатель запущен, расцепляется оконная муфта, и теперь шестерня привода вертится в холостую. Позднее при включенном зажигании шестерня привода расцепляется с зубчатым ободом.
Теперь рассмотрим реальный механизм : оконная муфта передает вращение только в одном направлении и связана с шестерней привода. На муфте стартерного электромотора имеются винтовые шлицы. Винтовые шлицы имеются также на валу якоря. Шестерня привода способна скользить вдоль них вращаясь при этом. Винтовые шлицы обеспечивают плавное сцепление шестерни привода с зубчатым ободом. После сцепления зубчатого обода с ведущей шестерней раскручивается двигатель. Шестерня привода вертит зубчатый обод (при этом работает оконная муфта). Когда двигатель запущен, то двигатель вертит шестерню привода, при этом оконная муфта отключена. Шестерня привода вертится в холостую, чтобы не повредить электромотор.
2. Электромагнитный включатель
Электромагнитный включатель – заставляет приводной рычаг передвинуть шестерню привода и направляет ток в электромотор.
Схема работы электромагнитного включателя
В центре включателя находится плунжер. Плунжер выполняет две функции : перемещает приводной рычаг, соединенный с одним концом плунжера, а также включает главные контакты через контактную пластину, соединенную с его другим концом. Плунжер окружает втягивающая обмотка, которая подтягивает плунжер к главным контактам. Поверх втягивающей обмотки расположена удерживающая обмотка, которая удерживает плунжер у контактов. При повороте ключа зажигания электрический ток проходит по втягивающей, и удерживающей обмоткам, создавая магнитное поле. Это поле перемещает плунжер вправо. В результате контактная пластина замыкает главные контакты. Теперь клемма 30 замыкается с клеммой С, соединенной с мотором. В стартовый электромотор подается мощный ток, одновременно с этим, приводной рычаг приводит шестерню привода в зацепление и она начинает раскручивать двигатель.
Как устроен электромагнитный включатель?
Втягивающие и удерживающие обмотки закреплены на корпусе включателя. Контактная пластина расположена на торце плунжера напротив главного контакта. Втягивающие и удерживающие обмотки размещены вокруг плунжера, который поджимается возвратной пружиной. После запуска двигателя возвратная пружина перемещает шестерню привода в исходное положение.
Схема системы пуска двигателя
- Электромотор ;
- Система передачи ;
- Электромагнитный включатель ;
Электрическая схема системы пуска двигателя
Положительный полюс АКБ соединен с клеммой 30 и включателем зажигания. Клемма С соединена с обмотками возбуждения и обмоткой якоря, заземленными на корпус и далее соединенными с отрицательным полюсом АКБ. Все соединения выполнены мощным кабелем, который выдерживает большой ток. Клемма 50 соединена с положительным полюсом АКБ через включатель зажигания.
При повороте ключа зажигания ток сначала проходит через втягивающую и удерживающие обмотки, затем по обмоткам возбуждения и обмотке якоря, и наконец в землю. Поскольку сопротивление якоря и обмоток возбуждения очень низкое почти все напряжение АКБ падает на втягивающую и удерживающие обмотки. Возникающее в них поле перемещает плунжер вправо. Приводной рычаг, связанный с плунжером переводит муфту влево, одновременно поворачивая ее на винтовых шлицах якоря. Вместе с зацеплением привода с зубчатым венцом маховика временно замыкаются главные контакты. Когда главные контакты замкнуты контактной пластиной обмотки возбуждения и якоря питаются непосредственно от АКБ. После замыкания контактов выравниваются потенциалы клемм С и 50. Втягивающая обмотка уже не действует на плунжер. И он удерживается в прежнем положении только магнитным полем удерживающей обмотки. Когда после запуска двигателя ключ зажигания выключают главные контакты остаются замкнутыми. Но теперь ток от главных контактов во втягивающую обмотку поступает таким образом, что ее магнитное поле противоположно полю удерживающее обмотки. Оба магнитных поля взаимно уничтожаются. Теперь возвратная пружина переводит плунжер в исходное положение и размыкает главные контакты. Одновременно шестерня привода выходит из зацепления и возвращается в исходное положение.
Источник статьи: http://www.autoezda.com/electr/%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0-%D0%BF%D1%83%D1%81%D0%BA%D0%B0-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F
Устройство и принцип работы системы запуска двигателя
Система запуска двигателя автомобиля осуществляет первичное вращение коленчатого вала ДВС, в результате чего происходит воспламенение топливно-воздушной смеси в цилиндрах и силовой агрегат начинает работать самостоятельно.
Главной задачей системы пуска становится проворачивание коленвала, что позволяет поршню выполнить необходимое для воспламенения заряда сжатие смеси в цилиндрах. Затем горючее воспламеняется (от внешнего источника в бензиновых двигателях, от сильного сжатия и нагрева в дизельных).
Далее коленчатый вал начинает вращаться самостоятельно, то есть двигатель запускается, обороты коленвала увеличиваются, вращение вала становится возможным благодаря преобразованию тепловой энергии сгорания топлива в механическую работу. Как только обороты коленвала достигают определенной частоты, происходит автоматическое отключение системы запуска.
В этой статье мы рассмотрим, как работает электрическая система пуска двигателя, из каких какие основных элементов она состоит, а также поговорим о том, какие еще бывают системы запуска ДВС, кроме электрических решений.
Что представляет собой
В современных автомобилях реализована электрическая система пуска двигателя. Также ее часто называют стартерной системой пуска. Одновременно с вращением коленвала в работу включается система ГРМ, зажигания и топливоподачи. Происходит сгорание топливовоздушной смеси в камерах сгорания и поршни проворачивают коленвал. После достижения определенных оборотов коленчатого вала двигатель начинает работать самостоятельно, по инерции.
Запуск двигателя
Чтобы запустить двигатель, нужно достичь определенной частоты вращения коленчатого вала. Для разных типов двигателей это значение отличается. Для бензинового мотора минимально необходимо 40-70 об/мин, для дизельного – 100-200 об/мин.
На начальном этапе автомобилестроения активно использовалась механическая система пуска с помощью заводной рукоятки. Это было ненадежно и неудобно. Сейчас от таких решений отказались в пользу электрической системы запуска.
Система пуска автомобиля назначение и технические требования
Система пуска автомобиля служит для автоматического дистанционного пуска двигателя и состоит из стартера, механизма зацепления, электромагнитного реле и вспомогательного реле. Основными техническими требованиями к системе пуска являются:
- надежная работа стартера при 40-50 тыс. км пробега;
- надежная работа стартера при пуске до температуры 15оС
- надежная работа механизма зацепления и электромагнитных реле;
электрическая проводка питания стартера и реле надежно крепится. Стартеры, например, для легковых автомобилей СТ 29.3708, СТ 230-62, для грузовых автомобилей СТ 142 Б, СТ 130 Б потребляют ток от 550 до 850 А с частотой вращения до 5 тыс. мин-1 с последующим снижением тока до 80-100 А.
Устройство системы запуска двигателя
В систему пуска двигателя входят следующие ключевые элементы:
- механизмы управления (замок зажигания, дистанционный запуск, система Старт-Стоп);
- аккумуляторная батарея;
- стартер;
- провода определенного сечения.
Схема запуска двигателя
Ключевым элементом системы является стартер, который, в свою очередь, питается от аккумуляторной батареи. Это электродвигатель постоянного тока. Он создает крутящий момент, который передается маховику и коленчатому валу.
Система пуска обеспечивает первоначальное проворачивание коленчатого вала при запуске двигателя. Для того чтобы двигатель самостоятельно начал работать, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения. Для этих целей используется электрический стартер, обеспечивающий пусковую частоту вращения коленчатого вала: для бензиновых двигателей 40…100 об/мин, а для дизелей до 250 об/мин.
Пусковая частота зависит от условий смесеобразования и зажигания двигателя и является минимальной частотой вращения коленчатого вала, при которой в цилиндрах начинаются вспышки.
Мощность стартера зависит от момента сопротивления проворачиванию коленчатого вала и пусковой частоты. Момент сопротивления проворачиванию пропорционален рабочему объему двигателя и складывается из следующих составляющих:
— момент сил трения между поверхностями сопряжения деталей двигателя и во вспомогательных механизмах, связанных с коленчатым валом;
— момент инерционных сил, возрастающих при увеличении оборотов в процессе пуска двигателя;
— момент сопротивления, возникающий из-за процессов сжатия, происходящих в цилиндрах двигателя.
На специальной и тракторной технике некоторые двигатели имеют декомпрессионный механизм для облегчения пуска.
Схемы систем электростартерного пуска бензиновых двигателей отличаются между собой незначительно (рис. 2.1). В системах управления электростартером предусмотрены электромагнитные тяговые реле
с
механизмом привода
,
дополнительные реле
,
реле блокировки
, обеспечивающее дистанционное включение, автоматическое отключение стартера от АКБ после пуска двигателя и предотвращение включения стартера при работающем двигателе.
Источником энергии электростартерного пуска является стартерная АКБ
. В электростартерах используют
электродвигатели постоянного тока
. Характеристики стартерного электропривода с электродвигателями постоянного тока последовательного или смешанного возбуждения хорошо согласуются с характером нагрузки, создаваемой поршневым двигателем при пуске.
На тракторной, специальной, а также автомобильной технике, работающей в особых климатических условиях, часто применяются электрические устройства для облегчения пуска
Классический стартер (рис. 2.6) представляет собой электродвигатель постоянного тока с механизмом привода, управляемым тяговым реле и питанием от аккумуляторной батареи. Обычно такие стартеры имеют шестерню на валу якоря, с помощью которой осуществляется зубчатое зацепление с венцом маховика двигателя. При этом передаточное отношение шестеренного привода составляет 10…18 и ограничивается прочностными характеристиками зубьев привода.
Сила тока в обмотках стартера может составлять 200…500 А и выше. По мере увеличения частоты вращения якоря сила тока в обмотках уменьшается и соответственно уменьшается момент на валу якоря. Такой закон изменения крутящего момента наиболее благоприятен для пуска двигателя, так как в начале проворачивания коленчатого вала момент сопротивления наибольший.
Обычно стартеры имеют конструкцию, где статорная обмотка в них соединена последовательно с обмоткой якоря (рис. 2.2) – эти электродвигатели имеют последовательное возбуждение. Крутящий момент стартера зависит от двух факторов: магнитного поля статора и тока якоря, поэтому электродвигатель с последовательным возбуждением предпочтительнее, когда требуется создать большой крутящий момент. При включении стартера, в момент пуска электродвигателя, потребляемый ток максимален и ограничивается только сопротивлением обмоток. Такие стартеры могут развивать без нагрузки очень высокие обороты, и поэтому не рекомендуется их запускать вхолостую.
Рис. 2.1. Типичная схема электростартерного пуска
Рис. 2.2. Электродвигатель постоянного тока с последовательным возбуждением:
а) принципиальное устройство;
б) цепь стартера с последовательным возбуждением
1-обмотка возбуждения; 2-полюс магнита (магнитопровод); 3-якорь; 4-щетки; 5-коллектор; 6-АКБ; 7-замок зажигания
Кроме электродвигателей с последовательным возбуждением
, также существуют и электродвигатели смешанного возбуждения, независимого и электродвигатели с возбуждением от постоянных магнитов (рис. 2.3).
Электродвигатели с независимым питанием обмотки возбуждения
(рис. 2.3 д) в системах электростартерного пуска автомобильной и тракторной техники не применяются, так как на борту один пусковой источник – АКБ.
Электродвигатели с параллельным возбуждением
(рис. 2.3. а) в автомобильных электростартерах неэффективны при эксплуатации в холодных условиях (–20 ºС), а также имеют жесткую характеристику возбуждения, которая недопустима при малых передаточных отношениях, так как это может привести к поломке зубьев и привода.
Смешанное возбуждение стартерных электродвигателей
(рис. 2.3 в) позволяет объединить достоинства благоприятной характеристики последовательного возбуждения с плавностью хода и ограничением максимальных оборотов благодаря параллельному возбуждению. Такие электродвигатели имеют умеренно жесткую характеристику возбуждения.
Рис. 2.3. Типы возбуждения стартерных электродвигателей и их характеристики:
а) параллельное; б) последовательное; в) смешанное; г) от постоянных магнитов; д) независимое
В современных электростартерах чаще стала использоваться конструкция с независимым и неуправляемым возбуждением от постоянных магнитов
. Такие стартеры в своей конструкции имеют понижающий планетарный редуктор. Здесь сочетается относительно жесткая характеристика возбуждения и минимальная пусковая частота при максимальной нагрузке.
2.2. Электрический стартер с последовательным и смешанным возбуждением
Рассмотрим устройство и принцип работы стартера с предварительным зацеплением (рис. 2.4). Питание стартерного электродвигателя 10 осуществляется от АКБ через замкнутые контакты 1 тягового электромагнитного реле. При замыкании контактов выключателя S
приборов и стартера, дополнительного реле и реле блокировки, втягивающая 4 и удерживающая 5 обмотки тягового реле подключаются к аккумуляторной батарее. Якорь 6 тягового реле притягивается к магнитопроводу электромагнита и с помощью штока 7 и рычага 9 механизма привода вводит шестерню 13 в зацепление с зубчатым венцом 14 маховика двигателя.
Рис. 2.4. Схема управления электростартера с предварительным зацеплением: 1-контактные болты; 2-подвижная контактная пластина; 3-возвратная пружина; 4,5-соответственно втягивающая и удерживающая обмотки тягового реле; 6-якорь тягового реле; 7-шток; 8-обмотка возбуждения; 9-рычаг механизма привода; 10-электростартер; 11-поводковая муфта; 12-муфта свободного хода; 13-шестерня привода; 14-зубчатый венец маховика
После пуска двигателя, муфта 12 свободного хода (рис. 2.5) предотвращает передачу вращающего момента от маховика к валу якоря электродвигателя. Ролики поджаты пружинами в направлении вращения якоря, и они либо заклиниваются между ведущим и ведомым звеньями муфты, когда скорость якоря равна скорости двигателя, либо дают им свободно вращаться, когда двигатель развивает скорость, больше чем якорь.
Шестерня привода из зацепления с венцом маховика не выходит до тех пор, пока замкнуты контактные болты 1 (рис. 2.4). При размыкании выключателя S
втягивающая и удерживающая обмотки тягового реле подсоединяются к АКБ последовательно через силовые контактные болты 1. Так как число витков у обеих обмоток одинаково и по ним при последовательном соединении проходит ток одной и той же силы, то при разомкнутом выключателе
S
в них возникают два равных, но противоположно направленных магнитных потока. Магнитопровод электромагнита размагнитится, и возвратная пружина переместит якорь 6 реле в исходное нерабочее положение, тем самым выводя шестерню из зацепления с венцом маховика. При этом разомкнуться и силовые контактные болты 1. Типичная конструкция стартера с предварительным зацеплением показана на рис. 2.6.
1-буферная пружина; 2-наружное обойма (ведущее звено); 3-внутренняя обойма (ведомое звено); 4-ролики; 5-шестерня
Как работает запуск двигателя
После поворота ключа в замке зажигания в положение «запуск» замыкается электрическая цепь. Ток по плюсовой цепи от аккумулятора поступает на обмотку тягового реле стартера. Затем по обмотке возбуждения ток проходит к плюсовой щетке, затем по обмотке якоря на минусовую щетку. Так срабатывает тяговое реле. Подвижный сердечник втягивается и замыкает силовые пятаки. При движении сердечника выдвигается вилка, которая толкает приводной механизм (бендикс).
После замыкания силовых пятаков от аккумулятора подается пусковой ток по плюсовому проводу на статор, щетки и ротор (якорь) стартера. Вокруг обмоток возникает магнитное поле, которое приводит в движение якорь. Таким образом электрическая энергия от аккумулятора преобразуется в механическую энергию.
Работа выключенного и включенного стартера
Как уже было сказано, вилка, во время движения втягивающего реле, выталкивает бендикс к венцу маховика. Так происходит зацепление. Якорь вращается и приводит в движение маховик, который передает это движение коленчатому валу. После запуска двигателя маховик раскручивается до больших оборотов. Чтобы не повредить стартер, срабатывает обгонная муфта бендикса. При определенной частоте бендикс вращается независимо от якоря.
После запуска двигателя и отключения зажигания от положения «запуск» бендикс принимает исходное положение, а двигатель работает самостоятельно.
Советы и рекомендации
Кнопка запуска двигателя работает так, что водитель нажимает на нее и удерживает необходимое для пуска время. За этот отрезок времени стартер вращает коленвал, в результате происходит запуск ДВС. Затем конпку можно отпустить.
Отметим, что при выборе кнопки запуска двигателя «старт-стоп» следует учесть ряд определенных нюансов. Одним из таких моментов является вопрос фиксации данной кнопки. Оптимальным вариантом является такой, когда после нажатия контакты замкнуты, а после отпускания размыкаются. Если же кнопка будет иметь фиксацию, тогда после запуска двигателя для размыкания контактов потребуется быстро нажимать на нее еще раз.
Что касается самой кнопки, в свободной продаже представлены много доступных решений, которые отличаются по качеству исполнения, цене и другим характеристикам. Данные кнопки могут иметь подсветку, изготавливаются из пластика или металла.
По указанным причинам при выборе стоит учесть:
- на кнопку будет подаваться сильный ток;
- решение будет постоянно использоваться;
С учетом таких особенностей эксплуатации лучше выбирать кнопку запуска мотора с качественным наружным покрытием (например, хромирование). Такое изделие будет иметь стойкость к истиранию для сохранения приемлемого внешнего вида
Также нужно понимать, что дешевые предложения могут перегореть спустя всего несколько нажатий, так что данному аспекту следует уделить повышенное внимание
Особенности работы аккумуляторной батареи
От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.
Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.
Справка. Внутреннее сопротивление аккумулятора в среднем составляет 2-9 мОм. Сопротивление стартера бензинового мотора в среднем 20-30 мОм. Как видно, для правильной работы необходимо, чтобы сопротивление стартера и проводов в несколько раз превышало сопротивление аккумулятора, иначе внутреннее напряжение аккумулятора при пуске будет проседать ниже 7-9 вольт, а этого допускать нельзя. В момент подачи тока напряжение исправного АКБ проседает в среднем до 10,8В в течение нескольких секунд, а затем вновь восстанавливается до 12В или чуть выше.
Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».
Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.
Заводские характеристики АКБ, которые влияют на ее работу
Каждая АКБ имеет ряд параметров, которые стоит учитывать при выборе.
ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Тонировка авто — виды, особенности и стоимость
К ним можно отнести:
- Тип аккумулятора. Здесь можно выделить гелевые, свинцово-кислотные, литиево-ионные, никелево-металлогидридные, литиево-полимерные и прочие АКБ;
- Пусковой ток (мощность) источника питания, А;
- Минимальный уровень напряжения, Вольт;
- Емкость, А/ч;
- Рабочее напряжение, Вольт;
- Номинальная температура работы, 0С.
Сила тока при старте
Стартеры для бензинового и дизельного мотора будут отличаться по мощности. Для бензиновых ДВС используются стартеры мощностью 0,8-1,4 кВт, для дизельных – 2 кВт и выше. Что это значит? Это значит, что стартеру с дизельным мотором нужно больше мощности, чтобы прокрутить коленвал на сжатие. Стартер мощностью 1 кВт потребляет 80А, 2 кВт потребляет 160А. Больше всего энергии уходит на начальную прокрутку коленчатого вала.
Среднее значение пускового тока для бензинового двигателя – 255А для успешной прокрутки коленвала, но это с учетом плюсовой температуры 18С° или выше. При минусовой температуре стартеру нужно крутить коленвал в загустевшем масле, что повышает сопротивление.
Какой блок автозапуска выбрать
Перед покупкой блока необходимо определить, какие функции вам необходимы и сколько вы готовы заплатить за них. Если у вас уже стоит какая-то сигнализация, желательно найти блок автозапуска, совместимый с ней. Это позволит избежать серьезной переделки электропроводки автомобиля. Если же у вас установлена устаревшая сигнализация, которая обеспечивает только подачу звукового сигнала при попытке взлома или угона, то имеет смысл установить автозапуск, совмещенный с сигнализацией.
Блоки, которые расширяют возможности сигнализаций, обойдутся существенно дешевле, чем отдельные устройства. К примеру, релейный модуль Pandora RMD-8, совместимый с большинством сигнализаций Pandora, обойдется в 2-3 тысячи рублей. Модуль обеспечивает уверенный пуск и контроль работы как бензинового, так и дизельного двигателя. Его присоединяют к стандартной CAN-шине автомобиля, поэтому никаких серьезных переделок электропроводки не потребуется.
Более функциональные блоки с GSM-модулем обойдутся в 5-10 тысяч рублей. К примеру, стоимость модуля Starline M31 составляет 8-10 тысяч рублей. Модуль работает как с сигнализациями Starline, так и самостоятельно. При самостоятельном использовании модуля он в какой-то мере выполняет функции автосигнализации. Благодаря встроенному GPS-блоку, модуль информирует о местонахождении автомобиля, включении и выключении двигателя, позволяет проводить аудио и видеонаблюдение за происходящим в салоне. Для управления модулем используют телефон, планшет или другое устройство, работающее с соответствующей SIM-картой. Наличие трех резервных входов модуля, позволяет подключить к ним датчики дверей, вибрации или другие устройства. Единственный недостаток GSM-модулей – необходимость оплачивать трафик. Если модуль используется только в режиме обмена SMS, то ежемесячная оплата будет заметно ниже, но снизится и функциональность. Если же модуль работает в режиме постоянной связи, то оплата будет больше, но и сам модуль сможет выполнять большее число функций, среди которых возможность контролировать автомобиль в реальном времени.
Если же вам необходима полноценная сигнализация с функцией автозапуска, то неплохой вариант Starline D94 GSM Slave. Эта сигнализация обойдется в 20-25 тысяч рублей. Сигнализация оснащена встроенным датчиком вибрации, поддомкрачивания и угона. Сигнализация поддерживает подключение большого количества сторонних датчиков, что улучшает контроль безопасности. Встроенный GSM-модуль позволяет управлять сигнализацией не только с помощью штатного брелка, но и через соответствующее приложение в телефоне, смартфоне или планшете. Сигнализацию устанавливают на современные автомобили, оснащенные CAN-шиной. Единственный недостаток сигнализации – отсутствие GPS/GLONASS модуля, из-за чего невозможно отслеживание местоположения автомобиля.
Если по каким-то причинам вам не подходит GSM модуль или сигнализация, обратите внимание на традиционные устройства, использующие радиоканал. К примеру, Starline A91 Dialog
Стоимость сигнализации составляет 6-9 тысяч рублей. Брелок обеспечивает устойчивую связь с сигнализацией на расстоянии до 250 метров. Вся информация о состоянии автомобиля передается на брелок и отображается с помощью ЖК индикатора. Наличие дополнительных исполнительных каналов позволяет подключать различные устройства. К примеру, модуль управления зеркалами, предпусковой подогреватель или электрический привод, регулирующий высоту или положение сидений.
Особенности запуска двигателя в зимних условиях
В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.
При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.
Вот несколько советов, которые помогут запустить двигатель зимой:
- Перед включением стартера на холодную включите дальний свет на несколько секунд. Это запустит химические процессы в батарее, так сказать, «разбудит» аккумулятор.
- Не крутите стартер больше 10 секунд. Так батарея быстро садится, особенно на морозе.
- Выжмите полностью педаль сцепления, чтобы стартеру не нужно было крутить дополнительные шестерни в вязком трансмиссионном масле.
- Иногда могут помочь специальные аэрозоли или «стартерные жидкости», которые впрыскивают в воздухозаборник. При исправном состоянии мотор заведется.
Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.
Как устанавливают блок автозапуска на автомобиль
Схема подключения и распиновка кнопки стеклоподъемников ВАЗ
Для установки блока автозапуска придется серьезно изменить электропроводку автомобиля. Ведь блок автозапуска включает двигатель в обход штатной процедуры. При подключении блока автозапуска к автомобилю, оснащенному CAN-шиной, потребуется перепрограммировать контроллер. Поэтому самостоятельная установка блока или системы автозапуска возможна лишь в случае, если вы профессиональный автоэлектрик и обладаете необходимым оборудованием. Во всех остальных случаях велика вероятность ошибки, которая приведет к повреждению блока, а то и короткому замыканию электропроводки автомобиля. Поэтому устанавливайте блок автозапуска там же, где и приобретаете его. Это позволит избежать ошибок при подключении.
Система выпуска отработавших газов
Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.
Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.
Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!
Принцип работы оборудования автозапуска
Система дистанционного запуска двигателя может быть установлена автономно, либо совместно с охранной сигнализацией. Комплектующие устройства помещаются в небольшой корпус из пластика и располагаются под капотом. Стандартный набор включает: электронную плату, связанную с группой датчиков, и провода для подключения к электропроводке автомобиля. Автозапуском может быть оборудована машина с любым типом мотора (бензин, дизель) и коробки переключения передач (автоматическая, механическая, роботизированная, вариатор). Дополнительных требований к техническому состоянию авто не предъявляется.
При нажатии на кнопку брелока или при запуске соответствующей программы в приложении сигнал передается на специальный модуль, а блок управления, в свою очередь, питает электрическую цепь системы зажигания. Спустя некоторое время, необходимое для создания давления топлива бензонасосом в топливной рампе стартеру передается необходимое питание. Результат этого действия подобен повороту ключа зажигания или нажатию кнопки «Старт».
Устройство автозапуска регулирует работу мотора в течение времени, заданного механизмом, по истечении которого, происходит отключение стартера. В отличие от бензиновых ДВС в автомобилях с дизельными агрегатами система автозапуска, в первую очередь, активирует свечи накаливания. Такой алгоритм позволяет правильно прогреть цилиндры и только после этого подключать к работе стартер.
От чего зависит мощность АКБ, и как на это влияет пусковой ток?
Как уже упоминалось выше, мощность источника питания зависит от параметра разрядного тока и среднего показателя напряжения.
Все показатели измеряются через идентичные временные промежутки. При этом расчет мощности осуществляется по простой формуле:
Источник статьи: http://toyota-chr2.ru/sovety/sistema-puska-dvigatelya.html