Виды теплового двигателя машин

Виды тепловых двигателей

Теловой двигатель

Ежедневно мы имеем дело с двигателями, приводящими в движение автомобили, корабли, производственную технику, железнодорожные локомотивы и самолеты. Именно появление и широкое использование тепловых машин быстро продвинуло вперед промышленность.

· Тепловой двигатель – тепловая машина, превращающая тепло в механическую энергию, использует теплового решения вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях).

Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давления по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур, производится нагревание рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем (например, при сжигании топлива) и охладителем, в роли которой используется окружающая среда.

Миллионы автомобилей на двигателях внутреннего сгорания занимаются перевозом пассажиров и грузов. По железным дорогам ходят мощные тепловозы, по водным траекториям – теплоходы. Самолеты и вертолеты снабжены поршневыми, турбореактивными и турбовинтовыми двигателями. Ракетные двигатели «толкают» в космическое пространство станции, корабли и спутники Земли. Двигатели внутреннего сгорания в сельском хозяйстве устанавливают на комбайнах, насосных станциях, тракторах и прочих объектах.

Применение теплового двигателя

1. Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80% всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Читайте также:  Как снять генератор газ 3110 406 двигатель

2. Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях. На этих станциях для получения пара высокой температуры используется энергия атомных ядер.

3. На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели). Эти же двигатели устанавливаются на тракторах.

4. На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы получают энергию от тепловых двигателей электростанций.

5. На водном транспорте используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

6. В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах — турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах.

7. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы дешевую электроэнергию и были бы лишены всех видов современного скоростного транспорта

Виды тепловых двигателей

1. Двигатель Стирлинга — тепловая машина, в которой рабочее тело, в виде газа или жидкости, движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочей площадки с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года.

В современной научной литература этот узел называется «регенератором»

Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего регенератор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа).

Газ, проходя через наполнитель в одну сторону, отдаёт тепло регенератору, а при движении в другую сторону отбирает его. Регенератор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в β- и γ-конфигурациях. В последнем случае размеры и вес машины оказываются меньше.

Частично роль регенератора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В α-стирлинге регенератор может быть только внешним. Он устанавливается последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.

2. Паровая машина – тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно – поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.

Первая паровая машина построена в XVII в. Папеном и представляла цилиндр с поршнем, который поднимался действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливер Эвансом в 1769 году и англичанином Ричардом Тревитиком в 1800 году.

3. Поршневой двигатель –двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.

Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.

Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырехтактные двигатели.

4. Роторный (турбинный) двигатель внешнего сгорания — примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом, колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско — ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

5. Роторный (турбинный) двигатель внутреннего сгорания —примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно – реактивные двигатели.

6. Реактивные и ракетные двигатели —представляет собой совмещенный тепловой двигатель и движетель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. В тепловых реактивных двигателях обычно используется химическое топливо в газообразном, жидком или твердом состоянии, порождающее разогретый газ при сгорании.

Воздушно – реактивные двигатели используют газообразный окислитель из окружающей среды, тогда как ракетные двигатели снабжаются запасами всех компонентов рабочего тела с носителя и способны работать в любой среде, в том числе и в безвоздушном пространстве. Используются для приведения в движение самолётов, ракет и космических аппаратов

7. Твердотельные двигатели —такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур.

Источник статьи: http://poisk-ru.ru/s24696t11.html

Тепловые двигатели. Виды тепловых двигателей

Тепловой двигатель — это аппарат, который совершает работу за счет использования энергии топлива. Машина, работающая на таком двигателе, превращает тепловую энергию в механическую и применяет зависимость расширения вещества от значения температуры.

Первая тепловая машина появилась в Римской империи. Это была турбина внешнего сгорания, работающая на пару. Но из-за низкого развития техники это изобретение не получило развития. На прогресс оно никак не повлияло и вскоре было забыто. Позже в Китае появилось пороховое орудие и пороховая ракета. Это было сравнительно простое устройство. С точки зрения механики пороховая ракета не являлась тепловым двигателем, а с точки зрения физики являлась тепловой машиной. Уже в 17 веке ученые пытались изобрести на основе порохового орудия тепловой двигатель.

Виды тепловых двигателей

Тепловые двигатели внешнего сгорания:

1. Двигатель Стирлинга — это тепловой аппарат, в котором газообразное или жидкое рабочее тело совершает движения в замкнутом пространстве. Это устройство основано на периодическом охлаждении и нагреве рабочего тела. При этом извлекается энергия, которая возникает при изменении объема рабочего тела. Двигатель Стирлинга может работать от любого источника тепла.

2. Паровые машины. Главный их плюс — это простота и отличные тяговые качества, на которые не влияет скорость работы. При этом можно обходиться без редуктора. Этим паровая машина отличается в лучшую сторону от двигателя внутреннего сгорания, выдающего на малых оборотах недостаточное количество мощности. По этой причине паровую машину удобно использовать в качестве тягового двигателя. Недостатки: низкий КПД, невысокая скорость, постоянный расход воды и топлива, большой вес. Раньше паровые машины были единственным двигателем. Но они требовали много топлива и замерзали зимой. Затем их постепенно вытеснили электродвигатели, ДВС, паровые турбины и газовые, которые обладают компактностью, более высоким КПД, универсальностью и эффективностью.

Тепловые двигатели внутреннего сгорания:

1. ДВС (расшифровывается как двигатель внутреннего сгорания) — это двигатель, в процессе работы которого, часть сгорающего топлива преобразуется в механическую энергию. Поршневые ДВС различаются по виду топлива (газовые и жидкостные), по рабочему циклу (двух- и четырехтактные), по способу приготовления рабочей смеси (карбюраторные, дизели), по типу преобразования энергии (турбинные, комбинированные, поршневые и реактивные). Первый ДВС был придуман и создан Э. Ленуаром в 1860 году. Рабочий цикл состоит из четырех тактов, по этой причине этот двигатель еще называют четырехтактным. В настоящее время такой двигатель чаще всего встречается на автомобилях.

2. Роторный ДВС. В качестве примера можно привести электрическую тепловую станцию, работающую в базовом и пиковом режимах. Этот вид двигателя относительно прост и может быть создан в любых размерах. Вместо поршней используется ротор, вращающийся в специальной камере. В ней расположены впускные отверстия и выпускные, а также свеча зажигания. При таком типе конструкции четырехтактный цикл осуществляется без механизма газораспределения. В роторном ДВС можно использовать дешевое топливо. Также он практически не создает вибраций, дешевле и надежнее в производстве, чем поршневые тепловые двигатели.

3. Ракетные и реактивные тепловые двигатели. Суть этих устройств состоит в том, чтобы тяга создавалась не с помощью винта, а посредством отдачи выхлопных газов двигателя. Могут создавать тягу в пространстве без воздуха. Бывают твердотопливные, гибридные и жидкостные).

И последний подвид — это турбовинтовые тепловые двигатели. Создание энергии происходит за счет винта и за счет отдачи газов выхлопных.

Источник статьи: http://fb.ru/article/51318/teplovyie-dvigateli-vidyi-teplovyih-dvigateley

Виды тепловых двигателей

Развитие человеческой цивилизации немыслимо без применения машин и устройств, приводимых в действие за счёт механической работы. Благодаря наличию в земной коре ресурсов, способных выступать в роли топлива, человечество получило доступ к энергии.

При сжигании полезных ископаемых возник вопрос, как преобразовать тепловую энергию в механическую работу. С этой целью сконструированы и воплощены в жизнь всевозможные виды тепловых двигателей. Влияние агрегатов на нашу повседневную жизнь сложно оценить, ни один день не обходится без их участия. Установки вырабатывают электрическую энергию. Двигатели перемещают наземный, водный, воздушный транспорт, участвуют в повседневных делах, как подручный инструмент.

Наиболее распространённый тепловой двигатель внутреннего сгорания в разрезе:

Понятие теплового двигателя

Дабы разобраться, какое устройство называют тепловым двигателем, рассмотрим, как функционирует агрегат. По принятой классификации, установка способна преобразовать тепло от окисления горючего в действие силы на тело посредством теплового объёмного увеличения. Что касается изменения объёма, этот показатель часто встречающийся, однако, в некоторых двигателях используется изменение формы рабочего вещества.

Принцип работы теплового двигателя заключается в воздействии расширяющихся частиц газа на поршень, или лопасти турбины. В результате этого давления происходит перемещение детали, либо вращение вокруг оси. Работа наблюдается в силовых установках, работающих за счёт пара и в агрегатах, где сгорание горючего происходит внутри. Используя вращение, функционируют реактивные моторы самолётов.

Конструктивно агрегаты отличаются между собой, однако принцип действия тепловых двигателей одинаков. Механизмы оборудованы устройством нагрева, в роли рабочего вещества выступает пар или газ и устройством, поддерживающим низкую температуру. Установка нагрева предназначена для выработки тепловой энергии, способствует сгоранию и выделению тепла. Допустим, при горении выделилось некоторое количество тепла «Q нагревателя», эта энергия частично передаётся нагревателю и нагревает до температуры «T нагревателя». Проводится работа «А», ей предшествует перемещение поршня или турбинных лопаток.

Структурная схема работы теплового двигателя:

Вся величина в работу не трансформируется, её количество «Q холодильника» передаётся посредством теплоотдачи через корпус охладительной установке с величиной температуры «T холодильника», роль охладителя играет атмосфера.

Работа теплового двигателя заключается в действии силы на тело. Эффект оценивается величиной, называемой КПД (коэффициент полезного действия), поскольку только часть выделенной энергии расходуется на работу.

Полное расходование энергии невозможно, поскольку природные действия нельзя провести в обратном направлении. Это означает, что выделенное тепло не может самостоятельно вернуться от холодильника к нагревателю, иначе всю энергию можно было бы пустить на работу силовой установки.

Работа двигателя характеризуется формулой:

«Q1» — количество тепла, переданное от охладительной установки, «Q2» – величина тепла, переданное охладительной установке.

КПД тепловых двигателей «ɳ», это частное, полученное от совершённой установкой работы к величине тепла, которое отдала нагревательная установка.

Двигателей, вся теплота которых идёт на выполнение работы, нет, поэтому КПД ɳ˂1. Коэффициент полезного действия пропорционален результату вычитания температуры установки нагрева и установки охлаждения. «T1» -«T2» = 0, работа двигателя невозможна. Энергию, расходуемую двигателем, определяют исходя из энергии, выделяемой при сжигании используемой смеси. Показатель определяют, сжигая килограмм топлива и производя замеры в калориметре.

Удельная теплота сгорания горючего:

Горючее Количество теплоты, при сгорании 1кг горючего МДж/кг.
Керосин 44
Бензин 46
Каменный уголь 30
Бурый уголь 20
Дерево 10

Обратимый круговой процесс

Работа агрегата оценивается, с этой целью принято КПД идеального теплового двигателя. Впервые такое понятие ввёл изобретатель, Карно, в двадцать четвёртом году девятнадцатого века. Главный принцип цикла, обратимость. Согласно рассуждениям инженера, повторяемость процесса будет обеспечена, когда расширение рабочего вещества при нагреве будет сменяться сжатием этой субстанции до начального состояния при охлаждении. Обмен теплом с атмосферой цикле не учитывается, его нет.

Никола Леонард Сади Карно (1796 – 1832 года жизни):

Идеальный тепловой двигатель конструктивно содержит устройство нагрева с температурой «Т нагревателя», устройство охлаждения с температурой «Т холодильника» и вещество, которое, то сжимается, то расширяется.

Рассмотрим стадии цикла:

  • Расширение с температурой = const (А – Б).

Начальная стадия процесса, температура вещества равно значению «Т нагревателя». Происходит соприкосновение с устройством нагрева, веществу передалось тепло от «Q нагревателя», и оно увеличивается в объёме.

Стадии цикла Карно:

  • Увеличиваясь в объёме, вещество ни отдало, ни получило тепла (Б – В).

Тело, выполняющее силовое воздействие не соприкасается с устройством нагрева, однако продолжает увеличиваться в объёме, не передавая части теплового носителя атмосфере. Температура вещества выравнивается с температурой установки охлаждения.

  • Сдавливание с постоянной температурой (В – Г).

Вещество с показателем температуры, равным температуре установки охлаждения «Т холодильника», контактирует с охладителем и уменьшается в объёме, температура не меняется. Но само тело отдаёт часть температуры холодильнику, «Q холодильника».

  • Сдавливание с нарастанием силы и температуры, без теплообмена (Г – А).

Вещество уже не контактирует с холодильником, сжимается без отдачи температуры атмосфере. Температура вещества приравнивается к температуре нагревательного элемента.

Изотермические процессы протекают с постоянной температурой, тогда как адиабатические процессы происходят без теплообмена, следовательно, энтропия в процессах Карно сохраняется.

КПД, соответствующий реальным агрегатам ниже эталонного коэффициента. Идеальный коэффициент используют как эталон, когда определяют, каков резерв разработанной или усовершенствованной силовой установки.

Виды двигателей

Что бы легче различать, какие двигатели называют тепловыми, условно агрегаты классифицировали:

Тепловые двигатели с источником тепла отдельно от рабочего тела.

Мотор Стирлинга

Принцип действия основан на круговороте вещества, совершающего работу в замкнутом объёме. Само совершающее работу вещество, время от времени охлаждается или нагревается. Работа выполняется за счёт изменения объёма. Преимущество двигателя в том, что он способен функционировать от подвода тепла любого происхождения.

Действующая модель двигателя Стирлинга:

Паровой мотор

Преимущество агрегатов, простота и тяга на низких оборотах. Применение установки, работающую от пара не требует использования редуктора, что облегчает конструкцию. Паровая машина хороша для применения, как тяговый двигатель и по этому показателю превосходит двигатель внутреннего сгорания. Недостатки: вес агрегата, низкая скорость и КПД, постоянное применение больших объёмов жидкости.

Применение парового двигателя CVA201 на автомобильном транспорте:

Тепловые двигатели, с источником тепла, выполняющим роль рабочего тела

Двигатель со сгоранием внутри механизма

Силовая установка, работа которой сопряжена с частичным переходом энергии от окислившегося горючего в действие силы.

Классификация моторов проходит по нескольким признакам:

  • потребление топлива (бензин, солярка, пропан, бутан, метан);
  • цикл работы (моторы на 2 или 4 такта);
  • способ приготовления смеси (карбюратор, инжектор, дизель);
  • преобразование энергии (поршень, турбина, комбинация).

Поршневые двигатели внутреннего сгорания сегодня занимают лидирующие позиции. По сравнению с другими агрегатами, установок сделано и продано большинство. Ни одна сфера деятельности человека не обходится без этих моторов.

Роторные моторы внутреннего сгорания

Особенность, простота и возможность исполнения любых габаритов установки. Ротор выступает в качестве поршня, вращение происходит по траектории эпитрохоиды в замкнутом пространстве. Пространство снабжено технологическими отверстиями впуска и выпуска, а так же свечой воспламенения. Для выполнения рабочего хода требуется четыре такта, выполнение которых происходит без механизма распределения газов. Роторный мотор не требователен к горючему, дешевле в производстве, и надёжней в сравнении с поршневыми моторами. Недостаток установки, не соответствие экологическим нормам.

Двигатели с силой тяги от реактивной струи рабочего тела

Силовые установки функционируют за счёт силы тяги, полученной от отработанных газов при сгорании рабочего вещества. Преимущество в возможности работы в пространстве без воздуха.

Турбовинтовые агрегаты

Сила тяги сгоревшего рабочего тела используется для привода воздушного винта.

Экологические аспекты

За время использования установок, выявлены экологические проблемы тепловых двигателей. Если раньше человечество не ощущало выбросов в атмосферу, то по мере роста производства и увеличения количества установок, влияние чувствуется в значительной степени. Содержание углекислого газа за счёт рассеивания тепла в окружающую атмосферу ведёт к усилению парникового эффекта, что сказывается на всём живом и увеличивает среднегодовые показатели температур на Земле. Глобальное потепление катастрофически повлияет на мировой океан и последствия для цивилизации будут непредсказуемы.

Очистка, глобальный контроль, применение новых экологических стандартов, вот что спасёт нашу планету. Применение новых, безвредных видов топлива, к которым относится водород, переход на возобновляемые виды энергии. Только объединённые усилия всех стран повлияют на ситуацию, действуя в общих интересах, убережём наш дом от полного вымирания.

Источник статьи: http://motoran.ru/dvigatel/vidy-teplovyh-dvigatelej

Оцените статью
Все про машины