Возможно ли равномерное прямолинейное движение автомобиля при работающем двигателе
Андрій, ключевое слово — «погрешность». Делая подобные допущения, мы получаем ответ с определенной точностью. Если нас устраивает такая точность, то да, можно считать движение шайбы по льду и автомобиля по дороге движением по инерции. В следующем приближении нужно будет учесть трение шайбы о лед, вибрации автомобиля от неровностей дороги. Ну ок, допустим, мы рассматриваем движение астероида в межзвезном пространстве — но и там остается слабенькая гравитация, давление света, столкновения с отдельными молекулами.
Это как раз и есть то, что называется границами применимости классической механики. Классическая механика на самом деле неверна и не может описать многие явления. Но она дает великолепную точность и простоту описания в таких случаях, как движение шайбы по льду. Все, что касается движения транспорта, спортивных игр, военной баллистики, расчетов машин и механизмов, делается по формулам классической механики. Более тонкие явления вроде замедления времени, планковской длины или римановской кривизны пространства влияют тут меньше, чем севший на автомобиль микроб.
Андрій, что касается самой формулировки, то школьная формулировка определения движения по инерции неудачна и приводит к проблемам с определением понятия «сила». Вводя понятие силы для 2-м законе Ньютона, в школьной физике фактически не объясняют, как мы эту величину определяем. Ну не через показания динамометра же (тогда определением силы был бы закон Гука).
Показать полностью.
Строгим определением понятия «сила» может быть либо сам второй закон Ньютона (сила = то, что создает ускорение), тогда первый закон Ньютона становится частным случаем второго, а термин «движение по инерции» вообще теряет смысл и становится эквивалентным термину «движение с нулевым ускорением». Либо можно определить силу через работу как A = криволинейный интеграл F * dS, тогда постулировать придется понятие энергии, чтобы определить работу как разность энергий.
Хорошее строгое определение движения по инерции может звучать, например, так: «Движение по инерции — движение тела, не взаимодействующего с другими телами».
В теоретической механике вообще обходятся без всего этого, постулируя не законы Ньютона, а принцип наименьшего действия и само действие как интеграл от лагранжиана. Тогда законы Ньютона получаются как следствия из уравнений Лагранжа, а для полного описания движения любой механической системы достаточно записать ее лагранжиан.
Источник статьи: http://vk.com/wall-104757197_8400
Равномерное прямолинейное движение
1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.
Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.
2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.
Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.
Если за время \( t \) тело совершило перемещение \( \vec \) , то скорость его движения \( \vec >
Единица скорости: \( [\,v\,]=\frac<[\,s\,]> <[\,t\,]>\) ; \( [\,v\,]=\frac<1\,м><1\,с>=1\frac<м> <с>\) . За единицу скорости принимается 1 м/с — скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.
Зная скорость равномерного движения, можно найти перемещение за любой промежуток времени: \( \vec=\vec
3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.
Пусть \( \vec \) — перемещение тела (рис. 11). Направим координатную ось ОХ по направлению перемещения. Найдем проекцию перемещения на координатную ось ОХ. На рисунке \( x_0 \) — координата начальной точки перемещения, \( x \) — координата конечной точки перемещения. Проекция перемещения равна разности координат конечной и начальной точек: \( \vec_x=x-x_0 \) . С другой стороны, проекция перемещения равна проекции скорости, умноженной на время, т.е. \( \vec_x=\vec
Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.
Проекция скорости может быть как положительной, так и отрицательной. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси ОХ (рис. 12). В этом случае \( x>x_0 \) . Проекция скорости отрицательна, если тело движется против положительного направления оси ОХ (рис. 12). В этом случае \( x .
4. Зависимость координаты от времени можно представить графически.
Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: \( x \) = 4 м/с · \( t \) . Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).
Для того чтобы её построить, необходимо иметь две точки: одна из них \( t \) = 0 и \( x \) = 0, а другая \( t \) = 1 с, \( x \) = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.
Если в начальный момент времени координата тела \( x_0 \) = 2 м, а проекция его скорости \( v_x \) = 4 м/с, то уравнение движения имеет вид: \( x \) = 2 м + 4 м/с · \( t \) . Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой \( t \) = 0, \( x \) = 2 м (рис. 14).
В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \( x \) = 2 м – 4 м/с · \( t \) . График зависимости координаты такого движения от времени представлен на рисунке 15.
Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.
График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.
5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.
Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.
При решении задачи целесообразно придерживаться следующей последовательности действий:
- Кратко записать условие задачи.
- Проанализировать ситуацию, описанную в условии задачи:
— выяснить, можно ли принять движущиеся тела за материальные точки;
— сделать рисунок, изобразив на нём векторы скорости;
— выбрать систему отсчёта — тело отсчёта, направления координатных осей, начало отсчёта координат, начало отсчёта времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела. - Записать в общем виде уравнение движения в векторной форме и для проекций на координатные оси.
- Записать уравнение движения для каждого тела с учётом начальных условий и знаков проекций скорости.
- Решить задачу в общем виде.
- Подставить в формулу значения величин и выполнить вычисления.
- Проанализировать ответ.
Применим эту последовательность действий к приведённой выше задаче.
Дано: \( v_1 \) = 15 м/с \( v_2 \) = 12 м/с \( l \) = 270 м. Найти: \( t \) – ? \( x\) – ?
Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь
Система отсчёта связана с Землёй, ось \( Ox \) направлена в сторону движения первого тела, начало отсчёта координаты — т. \( O \) — положение первого тела в начальный момент времени.
Начальные условия: \( t \) = 0; \( x_ <01>\) = 0; \( x_ <02>\) = 270.
Уравнение в общем виде: \( \vec=\vec
Уравнения для каждого тела с учётом начальных условий: \( x_1=v_1t \) ; \( x_2=l-v_2t \) . В месте встречи тел \( x_1=x_2 \) ; следовательно: \( v_1t=l-v_2t \) . Откуда \( t=\frac
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?
1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с
2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?
1) 0,25 м
2) 6 м
3) 10 м
4) 150 м
3. Автомобиль «Рено» проезжает за 1 мин. путь 1,2 км. Автомобиль «Пежо» проезжает за 20 с путь 0,2 км. Сравните значения скорости «Рено» — \( v_1 \) и скорости «Пежо» — \( v_2 \) .
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)
4. На рисунке приведена столбчатая диаграмма. На ней представлены значения пути, которые при равномерном движении пролетают за одно и то же время муха (1) и воробей (2). Сравните их скорости \( v_1 \) и \( v_2 \) .
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)
5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен
1) 20 м
2) 40 м
3) 80 м
4) 160 м
6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен
1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с
7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости \( v_1 \) , \( v_2 \) и \( v_3 \) движения этих тел.
1) \( v_1=v_2=v_3 \)
2) \( v_1>v_2>v_3 \)
3) \( v_1
4) \( v_1=v_2 \) , \( v_3
8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?
9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?
1) 9,8 м
2) 6 м
3) 4 м
4) 2 м
10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид
1) \( x=1t \) (м)
2) \( x=2+3t \) (м)
3) \( x=2-1t \) (м)
4) \( x=4+2t \) (м)
11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.
ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость
ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит
12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.
1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось
Часть 2
13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?
Источник статьи: http://fizi4ka.ru/ogje-2018-po-fizike/ravnomernoe-prjamolinejnoe-dvizhenie.html