Явнополюсная синхронная машина схема

Электрика

Синхронные машины. Принцип работы. Явнополюсные и неявнополюсные машины.

Синхронные машины это такие машины переменного тока, в которых частота движения ротора равно частоте тока в статоре. А, следовательно, определяется частотой питающей сети. Для производства электричество чаще всего используют синхронные генераторы. А синхронные двигатели отличаются тем, что у них скорость вращения постоянна и не зависит от нагрузки.

Все синхронные машины в принципе имеют одинаковую конструкцию. Они состоят из неподвижной части, которую называют статором. Он представляет собой корпус внутри, которого закреплён сердечник. Сердечник имеет цилиндрическую форму и набирается из тонких пластин для уменьшения потерь на вихревые токи и гистерезис. В сердечнике с внутренней стороны имеются пазы, в которые уложена обмотка статора. Сердечник вместе с обмоткой называется якорем.

Внутри статора находится ротор, представляющий собой цилиндрической формы сердечник из сплошной стали который находится на валу. На сердечнике ротора намотана обмотка возбуждения, которая запитывается постоянным током потому нет необходимости делать сердечник ротора из шихтованной стали. Так как магнитный поток ротора постоянный.

Ток к ротору подводится через скользящие контакты в виде колец находящихся на валу, к которым прижаты графитовые щетки. Кольца изолированы друг от друга и от вала. А к ним подключены концы обмотки возбуждения. Сердечник ротора с обмоткой возбуждения называются индуктором.

Обмотка возбуждения размещается на роторе, так как ток возбуждения имеет малую величину по сравнению с током якоря. Иногда синхронные машины выполняют и наоборот. Это когда индуктор находится на статоре, а якорь на роторе. Ток возбуждения подводится к статору, а якорный ток, например для двигателя подводится к ротору.

Читайте также:  Схема подключения регулятора напряжения лада калина

Все синхронные машины можно разделить на два вида. Первый из них это синхронные машины, у которых ротор выполнен с неявно выряженными полюсами. Неявно выраженные полюса это когда обмотка ротора равномерно уложена в пазы сердечника. Не имея при этом явно выраженных полюсов. Это, как правило, высоко оборотистые машины. Так как на высокой скорости вращения ротор с явно выраженными полюсами будет испытывать высокие динамические нагрузки.

Синхронные машины с явно выряженными полюсами применяют на низких частотах вращения. Это, как правило, гидрогенераторы. Поскольку ротор вращается под напором столба воды, а создать на реке большой перепад воды достаточно сложно.

На роторе явно полюсной машины отчетливо выделяются магнитные полюса, на которые укладывается обмотка возбуждения.

Рассмотрим принцип действия синхронной машины на примере генератора переменного тока. К индуктору генератора подводится постоянный ток от внешнего источника тока. Этот ток создает основной магнитный поток, который пронизывает обмотки якоря. Обмотки якоря имеют одинаковое число витков и уложены друг относительно друга со смещением в 120 градусов.

При вращении ротора в обмотках статора наводится эдс вследствие электромагнитной индукции. Чтобы ток в обмотках якоря изменялся по синусоидальному закону, в явно полюсных машинах применяют полюсные наконечники особой формы. То есть воздушный зазор между полюсным наконечником и якорем не однородный, а изменяется с движением от середины к краю. Таким образом, магнитное поле в зазоре будет изменяться по закону близкому к синусоидальному.

В неявнополюсных машинах для получения формы тока близкой к синусоидальной используют неоднородное распределение обмотки возбуждения в пазах индуктора.

Когда синхронная машина работает в режиме электродвигателя, трех фазное напряжение подается на якорь. При этом обмотка индуктора замыкается накоротко, что обеспечивает асинхронный режим пуска синхронной машины. После разгона на индуктор подается постоянный ток, и машина входит в синхронизм.

Источник статьи: http://electrophysic.ru/elektricheskie-mashinyi/sinhronnyie-mashinyi.-printsip-rabotyi.-yavnopolyusnyie-i-neyavnopolyusnyie-mashinyi.html

Устройство синхронных машин, явнополюсные и неявнополюсные СМ.

Ответ:Конструктивная схема машины: В зависимости от расположения якоря синхронные машины выполняют с неподвижным или вращающимся якорем. Машины большой и средней мощности (рис. 285) выполняют с неподвижным якорем для удобства отвода электрической энергии от обмотки якоря или ее подвода к ней. Поскольку мощность возбуждения невелика, подвод постоянного тока к расположенной на роторе обмотке возбуждения с помощью двух колец не вызывает особых затруднений. В синхронных машинах с неподвижным якорем якорь 3 выполнен так же, как и статор асинхронной машины. На нем имеются пазы, в которых уложена трехфазная обмотка. Сердечник якоря запрессован в остов 2, для крепления машины на остове имеются лапы 6. Возможно также крепление с помощью фланца или другими способами. На валу ротора 4 установлен вентилятор 5, обеспечивающий охлаждение машины. Возбуждение синхронной машины осуществляется в данном случае от возбудителя 1. Конструкция ротора: В машинах с неподвижным якорем применяют две различные конструкции ротора: явнополюсную(рис. 286, а) и неявнополюсную (рис. 286,б). Явнополюсный (с явновыраженными полюсами) ротор обычно используют в машинах с четырьмя и большим числом полюсов. Обмотку возбуждения выполняют в этом случае в виде цилиндрических катушек 2 прямоугольного сечения, которые размещают на сердечниках 3 полюсов и укрепляют полюсными наконечниками 1.Ротор, сердечники полюсов и полюсные наконечники изготовляют из листовой стали.

Рис. 285. Общий вид синхронной машины с возбудителем.

Рис. 286. Расположение обмотки возбуждения на роторе синхронной явнополюсной (а) и неявнополюсной (б) машины.

Двухполюсные и четырехполюсные машины большой мощности, работающие при частоте вращения ротора 1500 и 3000 об/мин, выполняют, как правило, с неявнополюсным ротором. Применение в них явнополюсного ротора невозможно, так как не обеспечивается необходимая механическая прочность крепления полюсов и обмотки возбуждения. Обмотка возбуждения 2 в такой машине размещается в пазах сердечника 5 ротора, изготовленного из массивной стальной поковки, и укрепляется в них немагнитными металлическими клиньями. Лобовые части обмотки, на которые воздействуют значительные центробежные силы, крепят стальными массивными бандажами. Примерно 1/3 каждого полюсного деления ротора не имеет пазов; эти части образуют так называемые «большие зубцы» 4, через которые входит и выходит поток возбуждения. По своему назначению синхронные машины подразделяют на турбогенераторы, гидрогенераторы, дизель-генераторы и синхронные двигатели. Назначение машины в значительной степени определяет и ее конструкцию. Турбогенераторы, приводимые во вращение быстроходными паровыми или газовыми турбинами, выполняют неявнополюсными. Для получения стандартной частоты 50 Гц они должны иметь при двух полюсах частоту вращения 3000 об/мин, а при четырех полюсах—1500 об/мин. Гидрогенераторы приводятся во вращение тихоходными турбинами, частота вращения которых составляет несколько десятков или сотен оборотов в минуту, поэтому они выполняются с большим числом полюсов (16—96) и имеют явнополюсные роторы. Дизель-генераторы, работающие от двигателей внутреннего сгорания, и синхронные двигатели небольшой и средней мощности выполняют обычно явнополюсными, мощные же двигатели — неявнополюсными. Дизель-генераторы и синхронные двигатели выполняют, как правило, с горизонтальным расположением вала (рис. 287, а). В дизель-генераторе обычно имеется один подшипник; в качестве второй опоры ротора используется подшипник самого дизеля, вал которого жестко соединяется с валом ротора генератора. В синхронных машинах с явнополюсным ротором в полюсных наконечниках (рис. 287, 6) размещаются стержни беличьей клетки, выполненной из меди или латуни. С торцовых сторон ротора стержни соединяются с короткозамыкающими кольцами. В генераторах эту клетку называют демпферной обмоткой; она обеспечивает быстрое затухание колебаний ротора, возникающих при резких изменениях режима работы машины.

Рис. 287. Роторы дизель-генератора: 1 — вал; 2 — обмотка возбуждения; 3 — полюс ротора; 4 — стержни беличьей клетки; 5 — короткозамыкающие кольца.

В синхронных двигателях беличья клетка служит в качестве пусковой обмотки.

Источник статьи: http://helpiks.org/8-264.html

Конструкции синхронных машин.Работа и характеристики синхронных машин.Явнополюсный ротор

Любая синхронная машина состоит из двух главных частей: неподвижного статора и вращающегося ротора (рис.5.1). Статор и ротор разделены воздушным промежутком, который в больших синхронных машинах, как правило, значительно больше, чем в асинхронных машинах, одинаковых по мощности.

По конструкции статор синхронной машины принципиально не отличается от статора асинхронной машины.

Сердечник статора 1 набирают из штампованных изолированных листов электротехнической стали. В пазах статора располагают обмотку переменного тока 2 (как правило, трехфазное). На валу 4 закрепляют ротор 3 с обмоткой возбуждения. Концы этой обмотки подводят к контактным кольцам 5. Для подачи постоянного тока в обмотку возбуждения по контактным кольцам скользят щетки 6. Источником постоянного тока в рассматриваемой машине служит возбудитель 7, представляет собой генератор постоянного тока, якорь которого закреплен на общем валу с ротором синхронной машины.

Рис. 5.1. Устройство явнополюсной синхронной машины

Постоянный ток, проходя по обмотке возбуждения, создает магнитное поле ротора-поле возбуждения.

Роторы синхронных генераторов бывают с явно выраженными и неявно выраженными полюсами.

Явнополюсный ротор (рис.5.2) состоит из вала 1, на котором закреплены сердечники полюсов с полюсными катушками 2. Сердечники полюсов заканчиваются полюсными наконечниками 3, обычно обрабатывают таким образом, чтобы воздушный промежуток между полюсным наконечником и статором получался неравномерным. Он минимальный под серединой полюса и максимальный у его краев (рис.5.3, d 2> d 1). Делается это для того, чтобы кривую магнитной индукции В 0 в воздушном промежутке, имеет форму трапеции при равномерном промежутка 1, максимально приблизить к синусоиде 2.

Синхронные машины с явно выраженными полюсами, как правило, многополюсные. Они обычно рассчитываются на небольшие частоты вращения.

Гидрогенераторы всегда явнополюсные. Так как при малых частотах вращения n 1 (которые развивает турбина) гидрогенераторы должны выдавать электроэнергию промышленной частоты 50 Гц, то они должны иметь большое число пар полюсов:[adsense_id=»1″]

Роторы генераторов имеют большой диаметр (для размещения полюсов) и малую длину.

Турбогенераторы являются быстроходными синхронными машинами. Объясняется это высокой частотой вращения турбин, КПД которых увеличивается с повышением частоты вращения. Как правило, турбогенераторы изготавливаются двухполюсный (2р = 2) и имеют частоту вращения n 1 = 3000 об / мин.

При такой большой частоте вращения явнополюсна конструкция ротора непригодна из-за недостаточной механической прочности. Поэтому турбогенераторы должны неявнополюсными ротор — кованый стальной цилиндр профрезованимы продольными пазами для укладки обмотки возбуждения (см. рис.5.7, б). Неявнополюсными роторы имеют сравнительно небольшой диаметр при значительной длине.

Рис. 5.2. Явнополюсный ротор Рис. 5.3. Распределение магнитной индукции в промежутке синхронной машины

В синхронных машинах используются два способа возбуждения: электромагнитное возбуждение и возбуждение постоянными магнитами.

В зависимости от способа питания обмотки возбуждения постоянным током различают независимое возбуждение и самовозбуждение.

При независимом возбуждении для получения постоянного тока используют возбудитель С (см. рис.5.1), который располагается на одном валу с синхронной машиной и представляет собой генератор постоянного тока, мощность которого не превышает 2 ¸ 5% от мощности синхронной машины.

При самовозбуждении для питания обмотки возбуждения постоянным выпрямленным током, получаемой от генератора, используются выпрямители.

В случае возбуждения постоянными магнитами ротор не имеет обмотки возбуждения, а его полюса представляют собой постоянный магнит. Это дает возможность получить машину без контактных колец, а потому, повысить ее надежность и КПД.

На полюсных наконечниках явно выраженных полюсов ротора имеются пазы, в которых укладывают стержни демпферной короткозамкнутой обмотки. Эта обмотка служит для успокоения ротора в генераторах, а также для пуска в синхронных двигателях.

Синхронные машины небольшой мощности иногда изготовляют обратными (по типу машин постоянного тока).

У таких машин обмотка переменного тока располагается в пазах ротора и выводится до трех контактных колец, а обмотка возбуждения располагается на явно выраженных полюсах статора. Мощными эти машины не производятся, так как при такой конструкции через контактные кольца приходится пропускать большой переменный ток (главный ток машины) при высоком напряжении, тогда как в машинах обычного исполнения через контактные кольца ротора приходит небольшой по величине ток возбуждения при напряжении до 440 В.

Синхронные двигатели малых мощностей разнообразны по конструкции.

Васюра А.С. — Книга «Электромашинные элементы и устройства систем управления и автоматики» часть 2

Источник статьи: http://vetrodvig.ru/konstrukcii-sinxronnyx-generatorov-sinxronnye-mashiny-yavnopolyusnyj-rotor/

Устройство и принцип действия синхронной машины

Устройство синхронных машин.

Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах.

Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора.

Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4).

При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС , где B – магнитная индукция в воздушном зазоре между статором и ротором; l – активная длина проводника; – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось, что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив , получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где – обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 120 0 , и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя.

Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора. Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и , которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС.

При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора.

В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .

При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине.

Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины.

Частота вращения магнитного поля статора .

Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а).

Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 90 0 (поперечная реакция якоря).

При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0 на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 90 0 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 90 0 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ().

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 90 0 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 90 0 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину ().

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора.

Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

Источник статьи: http://electrono.ru/elektricheskie-mashiny/ustrojstvo-i-princip-dejstviya-sinxronnoj-mashiny

Оцените статью
Все про машины